Watch the Dallas Symposium LIVE, and fundraiser auction
Ticket proceeds support mindat.org! - click here...
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Götze, J., Plötze, M., Fuchs, H., Habermann, D. (1999) Defect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63 (2) 149-163 doi:10.1180/002646199548394

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleDefect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies
JournalMineralogical MagazineISSN0026-461X
AuthorsGötze, J.Author
Plötze, M.Author
Fuchs, H.Author
Habermann, D.Author
Year1999 (April)Volume63
Issue2
PublisherMineralogical Society
Download URLhttps://rruff.info/doclib/MinMag/Volume_63/63-2-149.pdf+
DOIdoi:10.1180/002646199548394Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID1270Long-form Identifiermindat:1:5:1270:0
GUID0
Full ReferenceGötze, J., Plötze, M., Fuchs, H., Habermann, D. (1999) Defect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63 (2) 149-163 doi:10.1180/002646199548394
Plain TextGötze, J., Plötze, M., Fuchs, H., Habermann, D. (1999) Defect structure and luminescence behaviour of agate — results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Mineralogical Magazine, 63 (2) 149-163 doi:10.1180/002646199548394
In(1999) Mineralogical Magazine Vol. 63 (2) Mineralogical Society
Abstract/NotesAbstractSamples of agate and quartz incrustations from different parent volcanic rocks of certain world-wide localities were investigated by EPR, CL and trace element analysis. In all agate samples the following paramagnetic centres were detected:, E′1, [AlO4]0 [FeO4/M+]0 and [GeO4/M+]0. Centres of the type [TiO4/Li+]0 and [TiO4/H+]0, which were detected in quartz of the parent volcanics, are absent in agate. Generally, the abundance of centres (silicon vacancy) and E′1 centres (oxygen vacancy) in agate is remarkably higher than in quartz. The high defect density in agates points to rapid growth of silica from a strongly supersaturated solution probably with a noncrystalline precursor.CL microscopy reveals internal structures and zoning in agates and quartz incrustations which clearly differ from those discernible by conventional polarizing microscopy. The CL spectra of agates differ from those of quartz from crystalline rocks. At least three broad emission bands were detected in the CL spectra: a blue band of low intensity, a yellow band at about 580 nm, and an intense red band at 650 nm. The CL emission at 650 nm shows some relations to the hydroxyl or alkali content and the abundance of centres and E′1 centres. The emission intensity increases during electron bombardement due to the conversion of different precursors (e.g. ≡Si-O-H, ≡Si-O-Na groups) into hole centres. Another conspicuous feature in the CL spectra of agates is the existence of a yellow emission band centred at around 580 nm. The predominance of the yellow CL emission band and the high concentration of E′1 centres are typical for agates of acidic volcanics and are indicative of a close relationship between the two.

Mineral Pages

MineralCitation Details
Agate


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 18, 2025 06:57:03
Go to top of page