Vote for your favorite mineral in #MinCup25! - Jeremejevite vs. Haüyne
Are you ready for a battle of the blues? In a match of newcomers, volcanic gem hauyne is taking on rare jeremejevite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Kempe, U., Götze, J. (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66 (1) 151-172 doi:10.1180/0026461026610019

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleCathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits
JournalMineralogical Magazine
AuthorsKempe, U.Author
Götze, J.Author
Year2002 (February)Volume66
Issue1
PublisherMineralogical Society
DOIdoi:10.1180/0026461026610019Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID243331Long-form Identifiermindat:1:5:243331:2
GUID0
Full ReferenceKempe, U., Götze, J. (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66 (1) 151-172 doi:10.1180/0026461026610019
Plain TextKempe, U., Götze, J. (2002) Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineralogical Magazine, 66 (1) 151-172 doi:10.1180/0026461026610019
Abstract/NotesAbstractApatite samples from rare-metal mineralization were investigated by a combination of cathodoluminescence (CL) microscopy and spectroscopy, microchemical analysis and trace element analysis. Internal structures revealed by CL can be related to variations in the crystal chemistry and may sometimes reflect changes in the composition of the mineralizing fluids.Apatite from mineralization related to alkaline rocks and carbonatites (Type 1) typically exhibits relatively homogeneous blue and lilac/violet CL colours due to activation by trace quantities of rare earth element ions (Ce3+, Eu2+, Sm3+, Dy3+ and Nd3+). These results correlate with determined trace element abundances, which show strong light rare earth element (LREE) enrichment for this type of apatite. However, a simple quantitative correlation between emission intensities of REE3+/2+ and analysed element concentrations was not found.Apatite from P-rich altered granites, greisens, pegmatites and veins from Sn-W deposits (Type 2) shows strong Mn2+-activated yellow-greenish CL, partially with distinct oscillatory zoning. Variations in the intensity of the Mn2+-activated CL emission can be related either to varying Mn/Fe ratios (quenching of Mn activated CL by Fe) or to self-quenching effects in zones with high Mn contents (>2.0 wt.%). The REE distribution patterns of apatite reflect the specific geological position of each sample and may serve as a “tracer” for the REE behaviour within the ore system. Although the REE contents are sometimes as high as several hundred parts per million, the spectral CL measurements do not exhibit typical REE emission lines because of dominance of the Mn emission. In these samples, REE-activated luminescence is only detectable by time-resolved laser-induced luminescence spectroscopy.Both types of apatite (Type 1 in the core and Type 2 in the rim) were found in single crystals from the Be deposit Ermakovka (Transbaikalia). This finding proves the existence of two stages of mineralization within this deposit.


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 3, 2025 06:45:58
Go to top of page