Vote for your favorite mineral in #MinCup25! - Paddlewheelite vs. Mannardite
It's a battle of the tiny as bright green #paddlewheelite goes up against jet black #mannardite. Both are small yet mighty minerals, but only one can win!
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Takigawa, Yukio, Tarumi, Nobuaki, Shiohara, Morio, Soda, Eiichi, Oda, Noriaki, Ogawa, Shinichi (2011) Novel Air-gap Formation Technology Using Ru Barrier Metal for Cu Interconnects with High Reliability and Low Capacitance. Japanese Journal of Applied Physics, 50. 16503 doi:10.1143/jjap.50.016503

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNovel Air-gap Formation Technology Using Ru Barrier Metal for Cu Interconnects with High Reliability and Low Capacitance
JournalJapanese Journal of Applied Physics
AuthorsTakigawa, YukioAuthor
Tarumi, NobuakiAuthor
Shiohara, MorioAuthor
Soda, EiichiAuthor
Oda, NoriakiAuthor
Ogawa, ShinichiAuthor
Year2011 (January 20)Volume50
PublisherJapan Society of Applied Physics
DOIdoi:10.1143/jjap.50.016503Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15036346Long-form Identifiermindat:1:5:15036346:2
GUID0
Full ReferenceTakigawa, Yukio, Tarumi, Nobuaki, Shiohara, Morio, Soda, Eiichi, Oda, Noriaki, Ogawa, Shinichi (2011) Novel Air-gap Formation Technology Using Ru Barrier Metal for Cu Interconnects with High Reliability and Low Capacitance. Japanese Journal of Applied Physics, 50. 16503 doi:10.1143/jjap.50.016503
Plain TextTakigawa, Yukio, Tarumi, Nobuaki, Shiohara, Morio, Soda, Eiichi, Oda, Noriaki, Ogawa, Shinichi (2011) Novel Air-gap Formation Technology Using Ru Barrier Metal for Cu Interconnects with High Reliability and Low Capacitance. Japanese Journal of Applied Physics, 50. 16503 doi:10.1143/jjap.50.016503
In(2011) Japanese Journal of Applied Physics Vol. 50. Japan Society of Applied Physics


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 16, 2025 13:12:01
Go to top of page