Vote for your favorite mineral in #MinCup25! - Carpathite vs. Leucite
Brace for oddness in a match between one of the very few hydrocarbon minerals carpathite and the temperature-flipping mineral leucite.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Dhandole, Love Kumar, Koh, Tae Sik, Anushkkaran, Periyasamy, Chung, Hee-Suk, Chae, Weon-Sik, Lee, Hyun Hwi, Choi, Sun Hee, Cho, Min, Jang, Jum Suk (2022) Enhanced charge transfer with tuning surface state in hematite photoanode integrated by niobium and zirconium co-doping for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 315. 121538 doi:10.1016/j.apcatb.2022.121538

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleEnhanced charge transfer with tuning surface state in hematite photoanode integrated by niobium and zirconium co-doping for efficient photoelectrochemical water splitting
JournalApplied Catalysis B: Environmental
AuthorsDhandole, Love KumarAuthor
Koh, Tae SikAuthor
Anushkkaran, PeriyasamyAuthor
Chung, Hee-SukAuthor
Chae, Weon-SikAuthor
Lee, Hyun HwiAuthor
Choi, Sun HeeAuthor
Cho, MinAuthor
Jang, Jum SukAuthor
Year2022 (October)Volume315
PublisherElsevier BV
DOIdoi:10.1016/j.apcatb.2022.121538Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15465944Long-form Identifiermindat:1:5:15465944:8
GUID0
Full ReferenceDhandole, Love Kumar, Koh, Tae Sik, Anushkkaran, Periyasamy, Chung, Hee-Suk, Chae, Weon-Sik, Lee, Hyun Hwi, Choi, Sun Hee, Cho, Min, Jang, Jum Suk (2022) Enhanced charge transfer with tuning surface state in hematite photoanode integrated by niobium and zirconium co-doping for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 315. 121538 doi:10.1016/j.apcatb.2022.121538
Plain TextDhandole, Love Kumar, Koh, Tae Sik, Anushkkaran, Periyasamy, Chung, Hee-Suk, Chae, Weon-Sik, Lee, Hyun Hwi, Choi, Sun Hee, Cho, Min, Jang, Jum Suk (2022) Enhanced charge transfer with tuning surface state in hematite photoanode integrated by niobium and zirconium co-doping for efficient photoelectrochemical water splitting. Applied Catalysis B: Environmental, 315. 121538 doi:10.1016/j.apcatb.2022.121538
In(2022) Applied Catalysis B: Environmental Vol. 315. Elsevier BV


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 6, 2025 12:39:16
Go to top of page