Vote for your favorite mineral in #MinCup25! - Dioptase vs. Wavellite
It's a green, green world for kiwi #wavellite vs desert emerald #dioptase.
Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Wang, Yongyi, Ma, Ben, He, Chun, Xia, Dehua, Yin, Ran (2023) Nitrate Protects Microorganisms and Promotes Formation of Toxic Nitrogenous Byproducts during Water Disinfection by Far-UVC Radiation. Environmental Science & Technology, 57 (24) 9064-9074 doi:10.1021/acs.est.3c00824

Advanced
   -   Only viewable:
Reference TypeJournal (article/letter/editorial)
TitleNitrate Protects Microorganisms and Promotes Formation of Toxic Nitrogenous Byproducts during Water Disinfection by Far-UVC Radiation
JournalEnvironmental Science & Technology
AuthorsWang, YongyiAuthor
Ma, BenAuthor
He, ChunAuthor
Xia, DehuaAuthor
Yin, RanAuthor
Year2023 (June 20)Volume57
Issue24
PublisherAmerican Chemical Society (ACS)
DOIdoi:10.1021/acs.est.3c00824Search in ResearchGate
Generate Citation Formats
Mindat Ref. ID15916054Long-form Identifiermindat:1:5:15916054:3
GUID0
Full ReferenceWang, Yongyi, Ma, Ben, He, Chun, Xia, Dehua, Yin, Ran (2023) Nitrate Protects Microorganisms and Promotes Formation of Toxic Nitrogenous Byproducts during Water Disinfection by Far-UVC Radiation. Environmental Science & Technology, 57 (24) 9064-9074 doi:10.1021/acs.est.3c00824
Plain TextWang, Yongyi, Ma, Ben, He, Chun, Xia, Dehua, Yin, Ran (2023) Nitrate Protects Microorganisms and Promotes Formation of Toxic Nitrogenous Byproducts during Water Disinfection by Far-UVC Radiation. Environmental Science & Technology, 57 (24) 9064-9074 doi:10.1021/acs.est.3c00824
In(2023, June) Environmental Science & Technology Vol. 57 (24) American Chemical Society (ACS)


See Also

These are possibly similar items as determined by title/reference text matching only.

 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are Β© OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: September 10, 2025 12:52:17
Go to top of page