Fresnoite
A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
About Fresnoite

Eckhard D. Stuart at the Esquire No.7
Esquire No. 7 claim, Big Creek, Big Creek-Rush Creek Mining District, Fresno County, California, USA
Esquire No. 7 claim, Big Creek, Big Creek-Rush Creek Mining District, Fresno County, California, USA
Formula:
Ba2Ti(Si2O7)O
Colour:
Lemon to canary yellow
Lustre:
Vitreous
Hardness:
3 - 4
Specific Gravity:
4.43
Crystal System:
Tetragonal
Name:
Named by John T. Alfors, Melvin C. Stinson, Robert A. Matthews and Adolf Pabst in 1965 for Fresno County that includes the type locality.
Unique Identifiers
Mindat ID:
1607
Long-form identifier:
mindat:1:1:1607:6
IMA Classification of Fresnoite
Classification of Fresnoite
9.BE.15
9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
9 : SILICATES (Germanates)
B : Sorosilicates
E : Si2O7 groups, with additional anions; cations in octahedral [6] and greater coordination
55.4.2.1
55 : SOROSILICATES Si2O7 Groups,Generally with no Additional Anions
4 : Si2O7 Groups, Generally with No Additional Anions with cations in [8] and lower coordination
55 : SOROSILICATES Si2O7 Groups,Generally with no Additional Anions
4 : Si2O7 Groups, Generally with No Additional Anions with cations in [8] and lower coordination
14.9.11
14 : Silicates not Containing Aluminum
9 : Silicates of Ti
14 : Silicates not Containing Aluminum
9 : Silicates of Ti
Mineral Symbols
As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.
Symbol | Source | Reference |
---|---|---|
Fno | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Pronunciation of Fresnoite
Pronunciation:
Play | Recorded by | Country |
---|---|---|
Jolyon Ralph | United Kingdom |
Physical Properties of Fresnoite
Vitreous
Colour:
Lemon to canary yellow
Streak:
White
Hardness:
3 - 4 on Mohs scale
Cleavage:
Imperfect/Fair
(001)
(001)
Density:
4.43 g/cm3 (Measured)
Comment:
Determined using a sample totaling 10.77 mg.
Optical Data of Fresnoite
Type:
Uniaxial (-)
RI values:
nω = 1.775 nε = 1.765
Max. Birefringence:
δ = 0.010
Based on recorded range of RI values above.
Based on recorded range of RI values above.
Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Surface Relief:
Very High
Pleochroism:
Visible
Comments:
In transmitted polarized light, from yellow to colorless. The mineral characteristically shows anomalous blueinterference colors.
Chemistry of Fresnoite
Mindat Formula:
Ba2Ti(Si2O7)O
Element Weights:
Elements listed:
Common Impurities:
Al,Fe,Mn,Mg,Ca,Sr,K
Crystallography of Fresnoite
Crystal System:
Tetragonal
Class (H-M):
4mm - Ditetragonal Pyramidal
Space Group:
P4bm
Cell Parameters:
a = 8.52 Å, c = 5.21 Å
Ratio:
a:c = 1 : 0.612
Unit Cell V:
378.20 ų (Calculated from Unit Cell)
Z:
2
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0010704 | Fresnoite | Moore P B, Louisnathan S J (1969) The crystal structure of fresnoite, Ba2(TiO)Si2O7 Positive polarity Zeitschrift fur Kristallographie 130 438-448 | ![]() | 1969 | sanbornite deposits of eastern Fresno County, California, USA | 0 | 293 |
0010705 | Fresnoite | Moore P B, Louisnathan S J (1969) The crystal structure of fresnoite, Ba2(TiO)Si2O7 Negative polarity Zeitschrift fur Kristallographie 130 438-448 | ![]() | 1969 | sanbornite deposits of eastern Fresno County, California, USA | 0 | 293 |
0015916 | Fresnoite | Masse R, Grenier J, Durif A (1967) Structure cristalline de la fresnoite _cod_database_code 1007234 Bulletin de la Societe Francaise de Mineralogie et de Cristallographie 90 20-23 | 1967 | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
5.20 Å | (20) |
3.81 Å | (20) |
3.305 Å | (50) |
3.08 Å | (100) |
2.695 Å | (20) |
2.610 Å | (20) |
2.150 Å | (30) |
2.065 Å | (25) |
Comments:
Esquire No. 7 claim, California, USA (Alfors et al. 1965).
Geological Environment
Paragenetic Mode(s):
Paragenetic Mode | Earliest Age (Ga) |
---|---|
High-? alteration and/or metamorphism | |
32 : Ba/Mn/Pb/Zn deposits, including metamorphic deposits |
Type Occurrence of Fresnoite
General Appearance of Type Material:
Sparse grains, generally less than 1 mm long.
Place of Conservation of Type Material:
California Division of Mines and Geology, San Francisco, California, USA.
Geological Setting of Type Material:
Gneissic metamorphic rocks composed mainly of sanbornite and quartz.
Associated Minerals at Type Locality:
Synonyms of Fresnoite
Other Language Names for Fresnoite
Common Associates
Associated Minerals Based on Photo Data:
25 photos of Fresnoite associated with Analcime | Na(AlSi2O6) · H2O |
9 photos of Fresnoite associated with Quartz | SiO2 |
7 photos of Fresnoite associated with Sanbornite | BaSi2O5 |
7 photos of Fresnoite associated with Bazirite | BaZr(Si3O9) |
6 photos of Fresnoite associated with Celsian | Ba(Al2Si2O8) |
6 photos of Fresnoite associated with Pyrrhotite | Fe1-xS |
4 photos of Fresnoite associated with Pyroxene Group | ADSi2O6 |
4 photos of Fresnoite associated with Strontiojoaquinite | Sr2Ba2(Na,Fe)2Ti2[Si4O12]2O2(O,OH)2 · H2O |
3 photos of Fresnoite associated with Walstromite | BaCa2(Si3O9) |
3 photos of Fresnoite associated with Kampfite | Ba12(Si11Al5)O31(CO3)8Cl5 |
Related Minerals - Strunz-mindat Grouping
9.BE. | Zinkgruvanite | Ba4Mn2+4Fe3+2(Si2O7)2(SO4)2O2(OH)2 |
9.BE. | Calciomurmanite | (Na,◻)2Ca(Ti,Mg,Nb)4[Si2O7]2O2(OH,O)2(H2O)4 |
9.BE. | Cámaraite | Ba3Na(Fe2+,Mn)8Ti4(Si2O7)4O4(OH,F)7 |
9.BE. | Alfredcasparite | Sr2TiO(Si2O7) |
9.BE. | Batievaite-(Y) | Y2Ca2Ti(Si2O7)2(OH)2(H2O)4 |
9.BE. | Nacareniobsite-(Y) | Na3Ca3YNb(Si2O7)2OF3 |
9.BE. | Alexkuznetsovite-(Ce) | Ce2Mn(CO3)(Si2O7) |
9.BE. | Bobshannonite | Na2KBa(Mn,Na)8(Nb,Ti)4(Si2O7)4O4(OH)4(O,F)2 |
9.BE. | Paralomonosovite | Na6◻4Ti4(Si2O7)2[PO3OH][PO2(OH)2]O2(OF) |
9.BE. | Madeiraite | Na2Ca2Fe2Zr2(Si2O7)2O2F2 |
9.BE. | Bortolanite | Ca2(Ca1.5Zr0.5)Na(NaCa)Ti(Si2O7)2(OF)F2 |
9.BE. | Moxuanxueite | NaCa6Zr(Si2O7)2OF3 |
9.BE. | Delhuyarite-(Ce) | Ce4Mg(Fe3+,W)3◻(Si2O7)2O6(OH)2 |
9.BE. | Christofschäferite-(Ce) | Ce3CaMnTiFe(3+)Ti2(Si2O7)2O8 |
9.BE.X | Asimowite | Fe2+4O(Si2O7) |
9.BE. | Biraite-(La) | La2Fe2+(CO3)(Si2O7) |
9.BE. | Pilanesbergite | Na2Ca2Fe2Ti2(Si2O7)2O2F2 |
9.BE.02 | Wadsleyite | Mg4O(Si2O7) |
9.BE.02 | Ohtaniite | Mg3(Si0.5◻0.5)Si2O8 |
9.BE.05 | Lawsonite | CaAl2(Si2O7)(OH)2 · H2O |
9.BE.05 | Hennomartinite | SrMn3+2(Si2O7)(OH)2 · H2O |
9.BE.05 | Cortesognoite | CaV2(Si2O7)(OH)2 · H2O |
9.BE.05 | Noelbensonite | BaMn3+2(Si2O7)(OH)2 · H2O |
9.BE.05 | Itoigawaite | SrAl2(Si2O7)(OH)2 · H2O |
9.BE.07 | Ilvaite | CaFe3+Fe2+2(Si2O7)O(OH) |
9.BE.07 | Amamoorite | CaMn2+2Mn3+(Si2O7)O(OH) |
9.BE.07 | Manganilvaite | CaFe2+Fe3+Mn2+(Si2O7)O(OH) |
9.BE.10 | Suolunite | Ca2(H2Si2O7) · H2O |
9.BE.12 | Jaffeite | Ca6(Si2O7)(OH)6 |
9.BE.17 | Janhaugite | (Na,Ca)3(Mn2+,Fe2+)3(Ti,Zr,Nb)2(Si2O7)2O2(OH,F)2 |
9.BE.17 | Burpalite | Na2CaZr(Si2O7)F2 |
9.BE.17 | Niocalite | (Ca,Nb)4(Si2O7)(O,OH,F)2 |
9.BE.17 | Normandite | NaCa(Mn,Fe)(Ti,Nb,Zr)(Si2O7)OF |
9.BE.17 | Hiortdahlite | Na2Ca4(Ca0.5Zr0.5)Zr(Si2O7)2OF3 |
9.BE.17 | Låvenite | Na2Ca2Mn2Zr2(Si2O7)2O2F2 |
9.BE.17 | Cuspidine | Ca8(Si2O7)2F4 |
9.BE.17 | Wöhlerite | Na2Ca4ZrNb(Si2O7)2O3F |
9.BE.17 | Baghdadite | Ca6Zr2(Si2O7)2O4 |
9.BE.20 | Nacareniobsite-(Ce) | Na3Ca3(Ce,REE)Nb(Si2O7)2OF3 |
9.BE.20 | Roumaite | (Ca,Na,REE,◻)7(Nb,Ti)[Si2O7]2OF3 |
9.BE.20 | Rinkite-(Ce) | (Ca3Ce)Na(NaCa)Ti(Si2O7)2(OF)F2 |
9.BE.20 | Nacareniobsite-(Nd) | Ca2(CaNd)Na3Nb(Si2O7)2(OF)F2 |
9.BE.20 | Rinkite-(Y) | Na2Ca4YTi(Si2O7)2OF3 |
9.BE.20 | Mosandrite-(Ce) | (Ca3REE)[(H2O)2Ca0.5◻0.5]Ti(Si2O7)2(OH)2(H2O)2 |
9.BE.22 | Hainite-(Y) | Na2Ca4(Y,REE)Ti(Si2O7)2OF3 |
9.BE.22 | Rosenbuschite | Na6Ca6Zr3Ti(Si2O7)4O2F6 |
9.BE.22 | Götzenite | NaCa6Ti(Si2O7)2OF3 |
9.BE.22 | Fogoite-(Y) | Na3Ca2Y2Ti(Si2O7)2OF3 |
9.BE.22 | Kochite | Na3Ca2MnZrTi(Si2O7)2OF3 |
9.BE.23 | Dovyrenite | Ca6Zr(Si2O7)2(OH)4 |
9.BE.25 | Lamprophyllite | (Na,Mn2+)3(Sr,Na)2(Ti,Fe3+)3(Si2O7)2O2(OH,O,F)2 |
9.BE.25 | Seidozerite | Na4MnZr2Ti(Si2O7)2O2F2 |
9.BE.25 | Nabalamprophyllite | (BaNa)Ti2Na3Ti(Si2O7)2O2(OH)2 |
9.BE.25 | Schüllerite | Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4 |
9.BE.25 | Ericssonite | BaMn2+2Fe3+(Si2O7)O(OH) |
9.BE.25 | Grenmarite | Na4MnZr3(Si2O7)2O2F2 |
9.BE.25 | Kazanskyite | BaNa3Ti2Nb(Si2O7)2O2(OH)2(H2O)4 |
9.BE.25 | Saamite | Ba◻Na3Ti2Nb(Si2O7)2O2(OH)F(H2O)2 |
9.BE.25 | Emmerichite | Ba2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2 |
9.BE.25 | Barytolamprophyllite | (Ba,Na)2(Na,Ti,Fe3+)4Ti2(Si2O7)2O(OH,F) |
9.BE.25 | Ericssonite-2O | BaMn2+2Fe3+(Si2O7)O(OH) |
9.BE.25 | Fluorbarytolamprophyllite | (Ba,Sr)2[(Na,Fe2+)3(Ti,Mg)F2][Ti2(Si2O7)2O2] |
9.BE.25 | Fluorlamprophyllite | Na3(SrNa)Ti3(Si2O7)2O2F2 |
9.BE.25 | Lileyite | Ba2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2 |
9.BE.27 | Kolskyite | CaNa2Ti4(Si2O7)2O4(H2O)7 |
9.BE.27 | Vigrishinite | NaZnTi4(Si2O7)2O3(OH)(H2O)4 |
9.BE.27 | Selivanovaite | NaFe3+Ti4(Si2O7)2O4(H2O)4 |
9.BE.27 | Murmanite | Na2Ti2(Si2O7)O2 · 2H2O |
9.BE.30 | Epistolite | (Na◻)Nb2Na3Ti(Si2O7)2O2(OH)2(H2O)4 |
9.BE.32 | Lomonosovite | Na5Ti2(Si2O7)(PO4)O2 |
9.BE.35 | Vuonnemite | Na11Ti4+Nb2(Si2O7)2(PO4)2O3(F,OH) |
9.BE.37 | Sobolevite | Na13Ca2Mn2Ti3(Si2O7)2(PO4)4O3F3 |
9.BE.40 | Ferroinnelite | Ba4Ti2Na(NaFe2+)Ti(Si2O7)2[(SO4)(PO4)]O2[O(OH)] |
9.BE.40 | Phosphoinnelite | Na3Ba4Ti3(Si2O7)2(PO4,SO4)2O2F |
9.BE.40 | Innelite | Ba4Ti2Na(NaMn2+)Ti(Si2O7)2[(SO4)(PO4)]O2[O(OH)] |
9.BE.42 | Yoshimuraite | Ba2Mn2Ti(Si2O7)(PO4)O(OH) |
9.BE.42 | Horiite | Ba2Mn2Mn4Ti2(Si2O7)2(PO4)2O2(OH)2 |
9.BE.45 | Quadruphite | Na6Na2(CaNa)2Na2Ti2Na2Ti2(Si2O7)2(PO4)4O4F2 |
9.BE.47 | Polyphite | Na5(Na4Ca2)Ti2(Si2O7)(PO4)3O2F2 |
9.BE.50 | Shkatulkalite | Na2Nb2Na3Ti(Si2O7)2O2(FO)(H2O)4(H2O)3 |
9.BE.50 | Bornemanite | Na6BaTi2Nb(Si2O7)2(PO4)O2(OH)F |
9.BE.55 | Hejtmanite | Ba2Mn2+4Ti2(Si2O7)2O2(OH)2F2 |
9.BE.55 | Bykovaite | (Ba,Na,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(H2O,F,OH)2 · 3.5H2O |
9.BE.55 | Nechelyustovite | (Ba,Sr,K)2(Na,Ti,Mn)4(Ti,Nb)2(Si2O7)2O2(O,H2O,F)2 · 4.5H2O |
9.BE.55 | Bafertisite | Ba2Fe2+4Ti2(Si2O7)2O2(OH)2F2 |
9.BE.60 | Delindeite | (Na,K)2(Ba,Ca)2(Ti,Fe,Al)3(Si2O7)2O2(OH)2 · 2H2O |
9.BE.62 | Orthochevkinite | (Ce,La,Ca,Na,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4O22 |
9.BE.62 va | Strontium Perrierite | (Ce,Sr,La,Ca)4Fe2+(Ti,Zr,Fe)2Ti2(Si2O7)2O8 |
9.BE.62 | Chevkinite-(Nd) | (Nd,REE)4(Fe2+,Mg)(Fe2+,Ti,Fe3+)2(Ti,Fe3+)2(Si2O7)2O8 ? |
9.BE.62 | Perrierite-(Nd) | Nd4MgFe3+2Ti2(Si2O7)2O8 ? |
9.BE.65 | Bussenite | Na2Ba2Fe2+Ti(Si2O7)(CO3)(OH)3F |
9.BE.67 | Jinshajiangite | BaNaFe2+4Ti2(Si2O7)2O2(OH)2F |
9.BE.67 | Perraultite | BaNaMn2+4Ti2(Si2O7)2O2(OH)2F |
9.BE.70 | Dingdaohengite-(Ce) | (Ce,La)4Fe2+(Ti,Fe2+,Mg,Fe3+)2Ti2(Si2O7)2O8 |
9.BE.70 | Perrierite-(Ce) | Ce4MgFe3+2Ti2O8(Si2O7)2 |
9.BE.70 | Karnasurtite-(Ce) | (Ce,La,Th)(Ti,Nb)(Al,Fe)(Si2O7)(OH)4 · 3H2O |
9.BE.70 | Maoniupingite-(Ce) | (Ce,Ca)4(Fe3+,Ti,Fe2+,◻)(Ti,Fe3+,Fe2+,Nb)4(Si2O7)2O8 |
9.BE.70 | Matsubaraite | Sr4Ti5(Si2O7)2O8 |
9.BE.70 | Rengeite | Sr4ZrTi4(Si2O7)2O8 |
9.BE.70 | Polyakovite-(Ce) | (Ce,Ca)4(Mg,Fe2+)(Cr3+,Fe3+)2(Ti,Nb)2(Si2O7)2O8 |
9.BE.70 | Hezuolinite | (Sr,REE)4Zr(Ti,Fe3+)4(Si2O7)2O8 |
9.BE.70 | UM2008-53-SiO:SrTiZr | Sr4ZrTi4(Si2O7)2O8 |
9.BE.70 | Chevkinite-(Ce) | Ce4(Ti,Fe2+,Fe3+)5O8(Si2O7)2 |
9.BE.70 | Perrierite-(La) | (La,Ce,Ca)4(Fe2+,Mn)(Ti,Fe3+,Al)4[(Si2O7)O4]2 |
9.BE.70 | Strontiochevkinite | (Sr,La,Ce,Ca)4Fe2+(Ti,Zr)2Ti2(Si2O7)2O8 |
9.BE.72 | Fersmanite | Ca4(Na,Ca)4(Ti,Nb)4(Si2O7)2O8F3 |
9.BE.75 | Belkovite | Ba3(Nb,Ti)6(Si2O7)2O12 |
9.BE.77 | Nasonite | Pb6Ca4(Si2O7)3Cl2 |
9.BE.80 | Melanotekite | Pb2Fe3+2(Si2O7)O2 |
9.BE.80 | Kentrolite | Pb2Mn3+2(Si2O7)O2 |
9.BE.82 | Alexkuznetsovite-(La) | La2Mn(CO3)(Si2O7) |
9.BE.82 | Tilleyite | Ca5(Si2O7)(CO3)2 |
9.BE.85 | Killalaite | Ca6.4(H0.6Si2O7)2(OH)2 |
9.BE.87 | Stavelotite-(La) | (La,Nd,Ca)3Mn2+3Cu(Mn3+,Fe3+,Mn4+)26(Si2O7)6O30 |
9.BE.90 | Magnesiorowlandite-(Y) | Y4(Mg,Fe)(Si2O7)2F2 |
9.BE.90 | Biraite-(Ce) | Ce2Fe2+(Si2O7)(CO3) |
9.BE.92 | Cervandonite-(Ce) | (Ce,Nd,La)(Fe3+,Fe2+,Ti,Al)3O2(Si2O7)(As3+O3)(OH) |
9.BE.92 | Chirvinskyite | (Na,Ca)13(Fe,Mn,◻)2(Ti,Zr)5(Si2O7)4(OH,O)12 · 2H2O |
9.BE.95 | Rusinovite | Ca10(Si2O7)3Cl2 |
9.BE.95 | Batisivite | BaV3+8Ti6(Si2O7)O22 |
9.BE.97 | Schlüterite-(Y) | (Y,REE)2AlSi2O7(OH)2F |
Fluorescence of Fresnoite
Pale yellow under SW UV @ 265.2 nm.
No fluorescence under LW UV @ 365.0 nm.
No fluorescence under LW UV @ 365.0 nm.
Other Information
Thermal Behaviour:
Fuses at about 4. Partially melted when heated in an electric furnace to 1200 °C and completely melted at 1300 °C to a yellow glass.
Notes:
Insoluble or only slightly soluble in most cold dilute acids and bases. Decomposed by hot 1:1 HCl and cold acetic acid leaving a colorless residue.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Internet Links for Fresnoite
mindat.org URL:
https://www.mindat.org/min-1607.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
References for Fresnoite
Reference List:
Alfors, John T., Stinson, Melvin C., Matthews, Robert A., Pabst, Adolf (1965) Seven new barium minerals from eastern Fresno County, California. American Mineralogist, 50 (3-4) 314-340
Masse, René, Grenier, Jean-Claude, Durif-Varambon, André (1967) Structure cristalline de la fresnoïte. Bulletin de Minéralogie, 90 (1) 20-23 doi:10.3406/bulmi.1967.6061
Moore, P. B., Louisnathan, J. (1967) Fresnoite: Unusal Titanium Coordination. Science, 156 (3780) 1361-1362 doi:10.1126/science.156.3780.1361
Blasse, G. (1968) Fluorescence of compounds with fresnoite (Ba2TiSi2O8) structure. Journal of Inorganic and Nuclear Chemistry, 30 (8) 2283-2284 doi:10.1016/0022-1902(68)80233-7
Moore, Paul B.; Louisnathan, S. John (1969) The crystal structure of fresnoite, Ba2(TiO)Si2O7. Zeitschrift für Kristallographie, 130 (1-6). 438-448 doi:10.1524/zkri.1969.130.1-6.438
Robbins, C.R. (1970) Synthesis and growth of fresnoite (Ba2TiSi2O8) from a TiO2 flux and its relation to the system BaTiO3-SiO2. Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, 74 (2). 229pp. doi:10.6028/jres.074a.018
Kimura, Masakazu, Fujino, Yoshio, Kawamura, Tsutomu (1976) New piezoelectric crystal: Synthetic fresnoite (Ba2Si2TiO8). Applied Physics Letters, 29 (4). 227-228 doi:10.1063/1.89045
Haussühl, S., Eckstein, J., Recker, K., Wallrafen, F. (1977) Growth and physical properties of fresnoite Ba2TiSi2O8. Journal of Crystal Growth, 40 (2). 200-204 doi:10.1016/0022-0248(77)90006-9
Kimura, Masakazu (1977) Elastic and piezoelectric properties of Ba2Si2TiO8. Journal of Applied Physics, 48 (7). 2850-2856 doi:10.1063/1.324092
Gabelica-Robert, M., Tarte, P. (1981) Vibrational spectrum of fresnoite (Ba2TiOSi2O7) and isostructural compounds. Physics and Chemistry of Minerals, 7 (1) 26-30 doi:10.1007/bf00308197
Halliyal, A., Bhalla, A. S., Newnham, R. E., Cross, L. E. (1981) Ba2TiGe2O8 and Ba2TiSi2O8 pyroelectric glass-ceramics. Journal of Materials Science, 16. 1023-1028 doi:10.1007/bf00542748
Foster, M. C., Arbogast, D. J., Nielson, R. M., Photinos, P., Abrahams, S. C. (1999) Fresnoite: A new ferroelectric mineral. Journal of Applied Physics, 85 (4). 2299-2303 doi:10.1063/1.369541
Mayerhöfer, Th.G, Dunken, H.H (2001) Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite. Vibrational Spectroscopy, 25 (2) 185-195 doi:10.1016/s0924-2031(01)00090-x
Höche, Thomas, Kleebe, Hans-Joachim, Brydson, Rik (2001) Can fresnoite (Ba2TiSi2O8) incorporate Ti3+when crystallizing from highly reduced melts?. Philosophical Magazine A, 81 (4). 825-839 doi:10.1080/01418610151133258
Mayerhöfer, Th.G, Dunken, H.H (2001) Single-crystal IR spectroscopic investigation on fresnoite, Sr-fresnoite and Ge-fresnoite. Vibrational Spectroscopy, 25 (2) 185-195 doi:10.1016/s0924-2031(01)00090-x
Withers, R. L., Tabira, Y., Liu, Y., Höche, T. (2002) A TEM and RUM study of the inherent displacive flexibility of the fresnoite framework structure type. Physics and Chemistry of Minerals, 29 (9) 624-632 doi:10.1007/s00269-002-0265-3
Mann, Matthew, Abbott, Edward E., Kolis, Joseph W. (2010) Hydrothermal crystal growth of fresnoite. Journal of Crystal Growth, 312 (22). 3395-3400 doi:10.1016/j.jcrysgro.2010.08.023
Schmid, S., Allen, P. (2011) Phase transitions in modulated fresnoite phases for piezoelectric applications. Acta Crystallographica Section A Foundations of Crystallography, 67. doi:10.1107/s0108767311082122
Shen, Chuanying, Zhang, Huaijin, Cong, Hengjiang, Yu, Haohai, Wang, Jiyang, Zhang, Shujun (2014) Investigations on the thermal and piezoelectric properties of fresnoite Ba2TiSi2O8 single crystals. Journal of Applied Physics, 116 (4). 44106pp. doi:10.1063/1.4891827
Shen, Chuanying, Wang, Duanliang, Zhang, Jinyue, Zhang, Huaijin, Wang, Jiyang, Boughton, Robert I. (2018) The growth and investigations of electromechanical properties of Fresnoite Ba2Si2TiO8 crystal as a function of orientation. Journal of Crystal Growth, 487. 17-22 doi:10.1016/j.jcrysgro.2018.02.003
Chukanov, Nikita V., Kazheva, Olga N., Fischer, Reinhard X., Aksenov, Sergey M. (2023) Refinement of the crystal structure of fresnoite, Ba2TiSi2O8, from Löhley (Eifel district, Germany); Gladstone–Dale compatibility, electronic polarizability and vibrational spectroscopy of minerals and inorganic compounds with pentacoordinated TiIVand a titanyl bond. Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, 79 (2) 184-194 doi:10.1107/s2052520622012045
Localities for Fresnoite
Locality List




All localities listed without proper references should be considered as questionable.
Quick NavTopAbout FresnoiteUnique IdentifiersIMA Classification Classification Mineral SymbolsPronunciation Physical Properties Optical Data Chemistry Crystallography Crystal StructureX-Ray Powder DiffractionGeological EnvironmentType Occurrence SynonymsOther LanguagesCommon AssociatesStrunz-MindatFluorescence Other InformationInternet Links References Localities Locality List
Graulay quarry, Hillesheim, Gerolstein, Vulkaneifel, Rhineland-Palatinate, Germany