Ganophyllite
About Ganophyllite
May be visually similar to bannisterite and parsettensite.
Compare also coombsite.
Unique Identifiers
IMA Classification of Ganophyllite
Classification of Ganophyllite
9 : SILICATES (Germanates)
E : Phyllosilicates
G : Double nets with 6-membered and larger rings
74 : PHYLLOSILICATES Modulated Layers
1 : Modulated Layers with joined islands
16 : Silicates Containing Aluminum and other Metals
16 : Aluminosilicates of Mn
Mineral Symbols
Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.
Symbol | Source | Reference |
---|---|---|
Gnp | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Gnp | Warr (2020) | Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30 |
Physical Properties of Ganophyllite
Perfect micaceous on {001}; distinct on {100}, {010}
Optical Data of Ganophyllite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Ganophyllite
Crystallography of Ganophyllite
β = 93.96°
Crystal Structure
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
CIF File Best | x | y | z | a | b | c
Stop | Start
Console Off | On | Grey | Yellow
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0002250 | Ganophyllite | Noe D C, Veblen D R (1999) Incommensurate modulation and the crystal structure of ganophyllite American Mineralogist 84 1088-1098 | ![]() | 1999 | 0 | 293 | |
0019465 | Ganophyllite | Eggleton R A, Guggenheim S (1986) A re-examination of the structure of ganophyllite Mineralogical Magazine 50 307-315 | ![]() | 1986 | Harstig mine, Pajsberg, Sweden | 0 | 293 |
X-Ray Powder Diffraction
d-spacing | Intensity |
---|---|
12.5 Å | (100) |
3.14 Å | (25) |
2.696 Å | (14) |
3.46 Å | (10) |
2.980 Å | (10) |
2.598 Å | (10) |
2.465 Å | (10) |
Geological Environment
Paragenetic Mode | Earliest Age (Ga) |
---|---|
High-𝑇 alteration and/or metamorphism | |
32 : Ba/Mn/Pb/Zn deposits, including metamorphic deposits | |
Stage 7: Great Oxidation Event | <2.4 |
47a : [Near-surface hydration of prior minerals] |
Type Occurrence of Ganophyllite
Other Language Names for Ganophyllite
Relationship of Ganophyllite to other Species
Eggletonite | (Na,K,Ca)2(Mn,Fe)8(Si,Al)12O29(OH)7 · 11H2O | Mon. |
Tamaite | (Ca,K,Ba,Na)3-4Mn24(Si,Al)40(O,OH)112 · 21H2O | Mon. 2/m : P21/b |
Common Associates
30 photos of Ganophyllite associated with Willemite | Zn2SiO4 |
29 photos of Ganophyllite associated with Clinohedrite | CaZn(SiO4) · H2O |
25 photos of Ganophyllite associated with Hendricksite | KZn3(Si3Al)O10(OH)2 |
21 photos of Ganophyllite associated with Roeblingite | Pb2Ca6Mn2+(Si3O9)2(SO4)2(OH)2 · 4H2O |
21 photos of Ganophyllite associated with Xonotlite | Ca6(Si6O17)(OH)2 |
17 photos of Ganophyllite associated with Rhodonite | CaMn3Mn[Si5O15] |
16 photos of Ganophyllite associated with Prehnite | Ca2Al2Si3O10(OH)2 |
15 photos of Ganophyllite associated with Axinite-(Mn) | Ca2Mn2+Al2BSi4O15(OH) |
15 photos of Ganophyllite associated with Hancockite | (CaPb)(AlAlFe3+)O[Si2O7][SiO4](OH) |
10 photos of Ganophyllite associated with Pennantite | Mn2+5Al(AlSi3O10)(OH)8 |
Related Minerals - Strunz-mindat Grouping
9.EG.05 | Cymrite | BaAl2Si2(O,OH)8 · H2O |
9.EG.10 | Naujakasite | (Na,K)6(Fe2+,Mn2+,Ca)(Al,Fe)4Si8O26 |
9.EG.10 | Manganonaujakasite | Na6(Mn2+,Fe2+)Al4Si8O26 |
9.EG.15 | Dmisteinbergite | Ca(Al2Si2O8) |
9.EG.20 | Kampfite | Ba12(Si11Al5)O31(CO3)8Cl5 |
9.EG.25 | Vertumnite | Ca4Al4Si4O6(OH)24 · 3H2O |
9.EG.25 | Strätlingite | Ca2Al2SiO7 · 8H2O |
9.EG.30 | Eggletonite | (Na,K,Ca)2(Mn,Fe)8(Si,Al)12O29(OH)7 · 11H2O |
9.EG.30 | Tamaite | (Ca,K,Ba,Na)3-4Mn24(Si,Al)40(O,OH)112 · 21H2O |
9.EG.35 | Zussmanite | K(Fe,Mg,Mn)13(Si,Al)18O42(OH)14 |
9.EG.35 | Coombsite | KMn2+13(Si,Al)18O42(OH)14 |
9.EG.40 | Chalcodite | K(Fe3+,Mg,Fe2+)8(Si,Al)12(O,OH)27 |
9.EG.40 | Parsettensite | (K,Na,Ca)7.5(Mn,Mg)49Si72O168(OH)50 · nH2O |
9.EG.40 | Franklinphilite | (K,Na)4(Mn2+,Mg,Zn)48(Si,Al)72(O,OH)216 · 6H2O |
9.EG.40 | Lennilenapeite | K6-7(Mg,Mn,Fe,Zn)48(Si,Al)72(O,OH)216 · 16H2O |
9.EG.40 | Stilpnomelane | (K,Ca,Na)(Fe,Mg,Al)8(Si,Al)12(O,OH)36 · nH2O |
9.EG.45 | Latiumite | (Ca,K)4(Si,Al)5O11(SO4,CO3) |
9.EG.45 | Levantite | KCa3Al2(SiO4)(Si2O7)(PO4) |
9.EG.45 | Tuscanite | KCa6(Si,Al)10O22(SO4,CO3)2(OH) · H2O |
9.EG.50 | Jagoite | Pb18Fe3+4[Si4(Si,Fe3+)6][Pb4Si16(Si,Fe)4]O82Cl6 |
9.EG.50 | Friisite | Pb8Al3Si8O27Cl3 |
9.EG.55 | Wickenburgite | CaPb3Al2Si10O24(OH)6 |
9.EG.60 | Hyttsjöite | Pb18Ba2Ca5Mn2+2Fe3+2Si30O90Cl · 6H2O |
9.EG.65 | Armbrusterite | K5Na7Mn15[(Si9O22)4](OH)10 · 4H2O |
9.EG.70 | Roymillerite | Pb24Mg9(Si10O28)(CO3)10(BO3)(SiO4)(OH)13O5 |
9.EG.70 | Britvinite | [Pb7(OH)3F(BO3)2(CO3)][Mg4.5(OH)3(Si5O14)] |
9.EG.75 | Kayupovaite | Na2Mn10[(Si14Al2)O38(OH)8] · 7H2O |
9.EG.75 | UM1989-30-SiO:AlBaCaFeHKMgMn | (Ba,Ca)(Mn,Fe,Mg)22(Si,Al)32O76(OH)16 · 12H2O |
9.EG.75 | Bannisterite | (Ca,K,Na)(Mn2+,Fe2+)10(Si,Al)16O38(OH)8 · nH2O |
Radioactivity
Element | % Content | Activity (Bq/kg) | Radiation Type |
---|---|---|---|
Uranium (U) | 0.0000% | 0 | α, β, γ |
Thorium (Th) | 0.0000% | 0 | α, β, γ |
Potassium (K) | 5.1757% | 1,604 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
Distance | Dose rate | Risk |
---|---|---|
1 cm | ||
10 cm | ||
1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Internet Links for Ganophyllite
Please feel free to link to this page.
References for Ganophyllite
Localities for Ganophyllite
Locality List




All localities listed without proper references should be considered as questionable.
Australia | |
| ... |
Austria | |
| Kolitsch et al. (2019) |
| Kolitsch et al. (2021) |
Canada | |
| Horváth et al. (2019) |
China | |
| Pingyi Wan (2002) |
| Pingyi Wan (2002) |
| Pingyi Wan (2002) |
| Pingyi Wan (2002) |
Pingyi Wan (2002) | |
Italy | |
| Redazionale (2005) |
Antofilli et al. (1983) | |
| Pipino (1984) |
| Castellaro et al. (2023) |
| Palenzona et al. (1988) |
| Castellaro et al. (2011) |
| Piccoli et al. (2007) |
| Cámara et al. (2014) +1 other reference |
| Montrasio et al. (1996) +1 other reference |
Japan | |
| Nakagawa et al. (2009) |
| Matsubara et al. (1996) |
| - (n.d.) |
| Nakagawa et al. (2009) |
| Petrov (n.d.) +2 other references |
Nakagawa et al. (2009) | |
Nakagawa et al. (2009) | |
Nakagawa et al. (2009) | |
| Yamada (2004) |
| Ohe Rikosha specimens |
| Petrov (n.d.) |
| Nakagawa et al. (2009) |
| Bull. Kanagawa pref. Mus. (Nat. Sci.) |
Mandarino (2001) +2 other references | |
Namibia | |
| Dunn (1991) |
Portugal | |
| Oliveira et al. (2025) |
| Oliveira et al. (2025) |
| Idoia Garate-Olabe et al. (Guarda, Portugal) |
Russia | |
| Старикова (2011) |
Sweden | |
| Moore (1972) |
| Gatedal (n.d.) |
| Gatedal (n.d.) |
| Magnusson (1929) |
Gatedal (n.d.) | |
| Hamberg (1890) +2 other references |
Dana 7:I:539. | |
| Nysten (2020) |
Ounchanum et al. (1987) | |
Nysten (2020) | |
| Nysten (2020) |
UK | |
| Smith et al. (1948) |
| Smith et al. (1948) +2 other references |
USA | |
| |
| Rogers (1919) +4 other references |
| King et al. (1994) |
| Pavlides |
King et al. (1994) | |
| Palache (1935) +3 other references |
part of the Charlesite paragenesis |
Gambatesa Mine, Reppia, Ne, Genoa, Liguria, Italy