Birnessite
A valid IMA mineral species - grandfathered
This page is currently not sponsored. Click here to sponsor this page.
About Birnessite
Formula:
(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Colour:
Black; dark brown in transmitted light
Lustre:
Sub-Vitreous, Resinous, Waxy, Sub-Metallic, Dull, Earthy
Hardness:
1½
Specific Gravity:
3
Crystal System:
Monoclinic
Member of:
Name:
Named in 1956 by Lloyd Hugh Parker Jones and Angela Alice Milne for the type locality at Birness, Scotland, UK. Earlier called "manganous manganite" by McMurdie (1944).
Type Locality:
Isostructural with:
Generally massive, either earthy or as a resinous to dull fine-grained deposit. Sometime is a replacing material of manganese minerals, including silicates. Occurs in some manganese oxide dendrites. Rarely as dark brown needle crystals.
See also vernadite.
Many manganese oxides are better identified using infra-red spectroscopy than by x-ray diffraction because of issues of crystal size, disorder, etc. (Potter and Rossman, 1979).
Compare 'UM1979-06-O:CaHMn' (reported as the Ca analogue, but structurally different).
May mineralize fungal (Alternaria spp., Cladosporium spp.) hyphae, as known from a siderite boulder and from a soil (vide Burford et al., 2003).
See also vernadite.
Many manganese oxides are better identified using infra-red spectroscopy than by x-ray diffraction because of issues of crystal size, disorder, etc. (Potter and Rossman, 1979).
Compare 'UM1979-06-O:CaHMn' (reported as the Ca analogue, but structurally different).
May mineralize fungal (Alternaria spp., Cladosporium spp.) hyphae, as known from a siderite boulder and from a soil (vide Burford et al., 2003).
Unique Identifiers
Mindat ID:
680
Long-form identifier:
mindat:1:1:680:6
IMA Classification of Birnessite
Approved, 'Grandfathered' (first described prior to 1959)
IMA Formula:
(Na,Ca,K)0.6(Mn4+,Mn3+)2O4 · 1.5H2O
First published:
1956
Classification of Birnessite
4.FL.45
4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
F : Hydroxides (without V or U)
L : Hydroxides with H2O +- (OH); sheets of edge-sharing octahedra
4 : OXIDES (Hydroxides, V[5,6] vanadates, arsenites, antimonites, bismuthites, sulfites, selenites, tellurites, iodates)
F : Hydroxides (without V or U)
L : Hydroxides with H2O +- (OH); sheets of edge-sharing octahedra
7.5.3.1
7 : MULTIPLE OXIDES
5 : (AB)2X3
7 : MULTIPLE OXIDES
5 : (AB)2X3
7.18.11
7 : Oxides and Hydroxides
18 : Oxides of Mn
7 : Oxides and Hydroxides
18 : Oxides of Mn
Mineral Symbols
As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.
Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.
Please only use the official IMA–CNMNC symbol. Older variants are listed for historical use only.
Symbol | Source | Reference |
---|---|---|
Bir | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Bir | Warr (2020) | Warr, L.N. (2020) Recommended abbreviations for the names of clay minerals and associated phases. Clay Minerals, 55, 261–264 doi:10.1180/clm.2020.30 |
Physical Properties of Birnessite
Sub-Vitreous, Resinous, Waxy, Sub-Metallic, Dull, Earthy
Transparency:
Opaque
Comment:
Usually fine-grained massive
Colour:
Black; dark brown in transmitted light
Streak:
Dark brown to brown
Hardness:
1½ on Mohs scale
Tenacity:
Brittle
Density:
3 g/cm3 (Measured) 3.4 g/cm3 (Calculated)
Comment:
Usually earthy
Optical Data of Birnessite
Type:
Uniaxial (-)
RI values:
nω = 1.730 nε = 1.690
Birefringence:
0.040
Max. Birefringence:
δ = 0.040
Based on recorded range of RI values above.
Based on recorded range of RI values above.
Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Surface Relief:
High
Dispersion:
weak to moderate
Optical Extinction:
Parallel. Refractive indices not far from pyrochroite.
Comments:
The mineral is pseudo-uniaxial (-); an identification by optical properties is impossible.
Chemistry of Birnessite
Mindat Formula:
(Na,Ca)0.5(Mn4+,Mn3+)2O4 · 1.5H2O
Element Weights:
Common Impurities:
Cl,Co,Cu,Fe,K,Ni,Mg,S,Si
Crystallography of Birnessite
Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
B2/m
Setting:
C2/m
Cell Parameters:
a = 5.175 Å, b = 2.850 Å, c = 7.337 Å
β = 103.18°
β = 103.18°
Ratio:
a:b:c = 1.816 : 1 : 2.574
Unit Cell V:
105.36 ų (Calculated from Unit Cell)
Z:
1
Morphology:
Rarely in platelets, to 50 µm; commonly extremely finely crystalline, spherulitic, cellular. Rarely as divergent sprays of acicular crystals.
Comment:
Z also given as 0.5
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0001300 | Birnessite | Post J E, Veblen D R (1990) Crystal structure determinations of synthetic sodium, magnesium and potassium birnessite using TEM and the Rietveld method sample is Na-birn American Mineralogist 75 477-489 | ![]() | 1990 | 0 | 293 | |
0001301 | Birnessite | Post J E, Veblen D R (1990) Crystal structure determinations of synthetic sodium, magnesium and potassium birnessite using TEM and the Rietveld method American Mineralogist 75 477-489 | ![]() | 1990 | 0 | 293 | |
0001302 | Birnessite | Post J E, Veblen D R (1990) Crystal structure determinations of synthetic sodium, magnesium and potassium birnessite using TEM and the Rietveld method American Mineralogist 75 477-489 | ![]() | 1990 | 0 | 293 | |
0002932 | Birnessite | Lanson B, Drits V A, Feng Q, Manceau A (2002) Structure of synthetic Na-rich birnessite: Evidence for a triclinic one-layer unit cell American Mineralogist 87 1662-1671 | ![]() | 2002 | 0 | 293 | |
0004276 | Birnessite | Lopano C L, Heaney P J, Post J E, Hanson J, Komarneni S (2007) Time-resolved structural analysis of K-and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction American Mineralogist 92 380-387 | ![]() | 2007 | synthetic | 0 | 293 |
0004277 | Birnessite | Lopano C L, Heaney P J, Post J E, Hanson J, Komarneni S (2007) Time-resolved structural analysis of K-and Ba-exchange reactions with synthetic Na-birnessite using synchrotron X-ray diffraction American Mineralogist 92 380-387 | ![]() | 2007 | synthetic | 0 | 293 |
0004947 | Birnessite | Lopano C L, Heaney P J, Post J E (2009) Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy American Mineralogist 94 816-826 | ![]() | 2009 | 0 | 293 | |
0004948 | Birnessite | Lopano C L, Heaney P J, Post J E (2009) Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy American Mineralogist 94 816-826 | ![]() | 2009 | 0 | 293 | |
0004949 | Birnessite | Lopano C L, Heaney P J, Post J E (2009) Cs-exchange in birnessite: Reaction mechanisms inferred from time-resolved X-ray diffraction and transmission electron microscopy American Mineralogist 94 816-826 | ![]() | 2009 | 0 | 293 |
CIF Raw Data - click here to close
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
7.08 Å | (100) |
3.547 Å | (28) |
2.468 Å | (17) |
2.333 Å | (43) |
2.031 Å | (24) |
1.711 Å | (29) |
1.426 Å | (17) |
Comments:
Birnessite frequently yields only 2-4 x-ray diffraction peaks. Data above recorded on a marine nodule from the Caribbean Sea; all reflections are typically very broad. See extensive d-value set ICDD 23-1046 (synthetic): 7.09 (100), 5.60 (10), 3.56 (80), 2.74 (10), 2.58 (10), 2.56 (10), 2.51 (70), 2.47 (10), 2.42 (60), 2.31 (10), 2.26 (10), 2.25 (10), 2.21 (40) 2.15 (40), 2.14 (40), 2.09 (10), 1.97 (10), 1.94 (10), 1.86 (40), 1.82 (40), 1.81 (40), 1.77 (20), 1.75 (10), 1.66 (20), 1.63 (20), 1.55 (10), 1.53 (10), 1.52 (10), 1.47 (60), 1.43 (50), 1.41 (40) 1.37 (20). Data from ICDD 13-105 and 18-802 have been superceded.
Geological Environment
Paragenetic Mode(s):
Paragenetic Mode | Earliest Age (Ga) |
---|---|
High-? alteration and/or metamorphism | |
32 : Ba/Mn/Pb/Zn deposits, including metamorphic deposits | |
Stage 5: Initiation of plate tectonics | <3.5-2.5 |
42 : Sea-floor Mn nodules | |
Stage 7: Great Oxidation Event | <2.4 |
47a : [Near-surface hydration of prior minerals] | |
47e : [Vanadates, chromates, manganates] | |
Stage 10a: Neoproterozoic oxygenation/terrestrial biosphere | <0.6 |
48 : Soil leaching zone minerals | <0.6 |
49 : Oxic cellular biomineralization (see also #44) | <0.54 |
Geological Setting:
A major manganese-bearing mineral of many soils; a common alteration product of manganese-rich mineral deposits; a component of bacterially-precipitated manganese oxides; an important constituent of "desert varnish" and marine manganese nodules.
Type Occurrence of Birnessite
General Appearance of Type Material:
Black coating or cement on pebbles.
Place of Conservation of Type Material:
No designated type material.
Geological Setting of Type Material:
Concretion in an unconsolidated glacial sedimentary deposit.
Associated Minerals at Type Locality:
Synonyms of Birnessite
Other Language Names for Birnessite
Relationship of Birnessite to other Species
Member of:
Other Members of Birnessite Group:
Ranciéite | (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O | Trig. 3 : P3 |
Takanelite | (Mn,Ca)Mn4O9 · H2O | Hex. |
Common Associates
Associated Minerals Based on Photo Data:
57 photos of Birnessite associated with Todorokite | (Na,Ca,K,Ba,Sr)1-x(Mn,Mg,Al)6O12 · 3-4H2O |
49 photos of Birnessite associated with Romanèchite | (Ba,H2O)2(Mn4+,Mn3+)5O10 |
21 photos of Birnessite associated with Ranciéite | (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O |
14 photos of Birnessite associated with Calcite | CaCO3 |
12 photos of Birnessite associated with Serandite | NaMn2+2Si3O8(OH) |
10 photos of Birnessite associated with Aegirine | NaFe3+Si2O6 |
10 photos of Birnessite associated with Natrolite | Na2Al2Si3O10 · 2H2O |
10 photos of Birnessite associated with Leucophanite | NaCaBeSi2O6F |
9 photos of Birnessite associated with Microcline | K(AlSi3O8) |
6 photos of Birnessite associated with Kingsmountite | Ca3MnFeAl4(PO4)6(OH)4 · 12H2O |
Related Minerals - Strunz-mindat Grouping
4.FL. | Trébeurdenite | Fe2+2Fe3+4O2(OH)10CO3 · 3H2O |
4.FL. | Mariakrite | [Ca4Al2(OH)12(H2O)4][Fe2S4] |
4.FL.05 | Muskoxite | Mg7Fe4O13 · 10H2O |
4.FL.05 | Jamborite | Ni2+1-xCo3+x(OH)2-x(SO4)x · nH2O |
4.FL.05 | Mössbauerite | Fe3+6O4(OH)8[CO3] · 3H2O |
4.FL.05 | Meixnerite | Mg6Al2(OH)16(OH)2 · 4H2O |
4.FL.05 | Woodallite | Mg6Cr2(OH)16Cl2 · 4H2O |
4.FL.05 | Fougèrite | Fe2+4Fe3+2(OH)12[CO3] · 3H2O |
4.FL.05 | Dritsite | Li2Al4(OH)12Cl2 · 3H2O |
4.FL.05 | Rotemite | Ca4Cr2(OH)12Cl2 · 4H2O |
4.FL.05 | Iowaite | Mg6Fe3+2(OH)16Cl2 · 4H2O |
4.FL.10 | Hydrocalumite | Ca4Al2(OH)12(Cl,CO3,OH)2 · 4H2O |
4.FL.15 | Kuzelite | Ca4Al2(OH)12[SO4] · 6H2O |
4.FL.20 | Jianshuiite | (Mg,Mn,Ca)Mn3O7 · 3H2O |
4.FL.20 | Ernienickelite | NiMn3O7 · 3H2O |
4.FL.20 | Aurorite | Mn2+Mn4+3O7 · 3H2O |
4.FL.20 | Chalcophanite | ZnMn4+3O7 · 3H2O |
4.FL.25 | Woodruffite | Zn2+x/2(Mn4+1-xMn3+x)O2 · yH2O |
4.FL.30 | Asbolane | (Ni,Co)2-xMn4+(O,OH)4 · nH2O |
4.FL.30 va | Lampadite | Cu, Mn, O, H |
4.FL.35 | Buserite | Na4Mn14O27 · 21H2O |
4.FL.40 | Takanelite | (Mn,Ca)Mn4O9 · H2O |
4.FL.40 | Ranciéite | (Ca,Mn2+)0.2(Mn4+,Mn3+)O2 · 0.6H2O |
4.FL.55 | Cianciulliite | Mn(Mg,Mn)2Zn2(OH)10 · 2-4H2O |
4.FL.60 | Jensenite | Cu3[TeO6] · 2H2O |
4.FL.65 | Leisingite | Cu2MgTe6+O6 · 6H2O |
4.FL.70 | Akdalaite | Al10O14(OH)2 |
4.FL.75 | Cafetite | CaTi2O5 · H2O |
4.FL.80 | Mourite | UMo5O12(OH)10 |
4.FL.85 | Deloryite | Cu4(UO2)(MoO4)2(OH)6 |
4.FL.90 | Lagalyite | Ca2xMn1-xO2 · 1.5-2H2O |
4.FL.95 | Tunnerite (of Cornu) | |
4.FL.100 | Carbocalumite | Ca4Al2(OH)12(CO3) · 6H2O |
4.FL.100 | Mampsisite | Ca4Al2(CO3)(OH)12 · 5H2O |
Fluorescence of Birnessite
Not fluorescent in UV
Other Information
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Internet Links for Birnessite
mindat.org URL:
https://www.mindat.org/min-680.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
References for Birnessite
Reference List:
Feitknecht, W., Marti, W. (1945) Über die Oxydation von Mangan(II)-hydroxyd mit molekularem Sauerstoff. Helvetica Chimica Acta, 28 (1). 129-148 doi:10.1002/hlca.19450280113
Jones, L. H. P., Milne, Angela A. (1956) Birnessite, a new manganese oxide mineral from Aberdeenshire, Scotland. Mineralogical Magazine and Journal of the Mineralogical Society, 31 (235) 283-288 doi:10.1180/minmag.1956.031.235.01
Frondel, C., Marvin, U. B., Ito, J. (1960) New data on birnessite and hollandite. American Mineralogist, 45 (7-8) 871-874
Brown, F. H., Pabst, A., Sawyer, and D. L. (1971) Birnessite on colemanite at Boron, California. American Mineralogist, 56 (5-6) 1057-1064
Glover, E. D. (1977) Characterization of a marine birnessite. American Mineralogist, 62 (3-4) 278-285
Potter, Russell M., Rossman, George R (1979) The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. American Mineralogist, 64 (11-12) 1199-1218
Chukhrov, F. V., Gorshkov, A. I., Rudnitskaya, E. S., Beresovskaya, V. V., Sivtsov, A. V. (1980) Manganese Minerals in Clays: A Review. Clays and Clay Minerals, 28 (5). 346-354 doi:10.1346/ccmn.1980.0280504
Kim, S. J. (1981) Layer structure in poorly crystalline manganese hydroxides: birnessite and rancieite. Acta Crystallographica Section A Foundations of Crystallography, 37 (a1). C186 doi:10.1107/s0108767381093999
Burns, Roger G., Burns, Virginia Mee, Stockman, Harlan W. (1983) A review of the todorokite-buserite problem: implications to the mineralogy of marine manganese nodules. American Mineralogist, 68 (9-10) 972-980
Dunn, Pete J., Fleischer, Michael, Francis, Carl A., Langley, Richard H., Kissin, Stephen A., Shigley, Hames E., Vanko, David A., Zilczer, Janet A. (1984) New mineral names. American Mineralogist, 69 (7-8) 810-815
Golden, D. C. (1986) Ion Exchange, Thermal Transformations, and Oxidizing Properties of Birnessite. Clays and Clay Minerals, 34 (5) 511-520 doi:10.1346/ccmn.1986.0340503
Golden, D. C. (1987) Transformation of Birnessite to Buserite, Todorokite, and Manganite under Mild Hydrothermal Treatment. Clays and Clay Minerals, 35 (4) 271-280 doi:10.1346/ccmn.1987.0350404
Post, Jeffrey E., Veblen, David R. (1990) Crystal-structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. American Mineralogist, 75 (5-6) 477-489
Manceau, Alain, Gorshkov, Anatolii I., Drits, Victor A. (1992) Structural chemistry of Mn, Fe, Co, and Ni in manganese hydrous oxides: Part II. Information from EXAFS spectroscopy and electron and X-ray diffraction. American Mineralogist, 77 (11-12) 1144-1157
Lanson, Bruno, Drits, Victor A., Silvester, Ewen, Manceau, Alain (2000) Structure of H-exchanged hexagonal birnessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. American Mineralogist, 85 (5) 826-838 doi:10.2138/am-2000-5-625
Lanson, Bruno, Drits, Victor A., Gaillot, Anne-Claire, Silvester, Ewen, Plançon, Alain, Manceau, Alain (2002) Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. American Mineralogist, 87 (11) 1631-1645 doi:10.2138/am-2002-11-1213
Yang, Deng S., Wang, Ming K. (2002) Syntheses and Characterization of Birnessite by Oxidizing Pyrochroite in Alkaline Conditions. Clays and Clay Minerals, 50 (1) 63-69 doi:10.1346/000986002761002685
Post, Jeffrey E., Heaney, Peter J., Hanson, Jonathan (2002) Rietveld refinement of a triclinic structure for synthetic Na-birnessite using synchrotron powder diffraction data. Powder Diffraction, 17 (3). 218-221 doi:10.1154/1.1498279
BURFORD, EUAN P., KIERANS, MARTIN, GADD, GEOFFREY M. (2003) Geomycology: fungi in mineral substrata. Mycologist, 17 (3). 98-107 doi:10.1017/s0269915x03003112
Villalobos, M., Lanson, B., Manceau, A., Toner, B., Sposito, G. (2006) Structural model for the biogenic Mn oxide produced by Pseudomonas putida. American Mineralogist, 91 (4) 489-502 doi:10.2138/am.2006.1925
Johnson, E. A., Post, J. E. (2006) Water in the interlayer region of birnessite: Importance in cation exchange and structural stability. American Mineralogist, 91 (4) 609-618 doi:10.2138/am.2006.2090
Drits, V. A., Lanson, B., Gaillot, A.-C. (2007) Birnessite polytype systematics and identification by powder X-ray diffraction. American Mineralogist, 92 (5) 771-788 doi:10.2138/am.2007.2207
Cygan, R. T., Post, J. E., Heaney, P. J., Kubicki, J. D. (2012) Molecular models of birnessite and related hydrated layered minerals. American Mineralogist, 97 (8) 1505-1514 doi:10.2138/am.2012.3957
Aldi, K. A., Cabana, J., Sideris, P. J., Grey, C. P. (2012) Investigation of cation ordering in triclinic sodium birnessite via 23Na MAS NMR spectroscopy. American Mineralogist, 97 (5) 883-889 doi:10.2138/am.2012.3933
Ling, Florence T., Post, Jeffrey E., Heaney, Peter J., Santelli, Cara M., Ilton, Eugene S., Burgos, William D., Rose, Arthur W. (2020) A multi-method characterization of natural terrestrial birnessites. American Mineralogist, 105 (6). 833-847 doi:10.2138/am-2020-7303
Allard, Bert, Sjöberg, Susanne, Sjöberg, Viktor, Skogby, Henrik, Karlsson, Stefan (2023) Metal Exchangeability in the REE-Enriched Biogenic Mn Oxide Birnessite from Ytterby, Sweden. Minerals, 13 (8) doi:10.3390/min13081023
Chubarov, Victor M. (2023) New Approach for Direct Determination of Manganese Valence State in Ferromanganese Nodules by X-ray Fluorescence Spectrometry. Minerals, 13 (10) doi:10.3390/min13101329
Vermeersch, Eva, Košek, Filip, De Grave, Johan, Jehlička, Jan, Vandenabeele, Peter, Rousaki, Anastasia (2023) Identification of tunnel structures in manganese oxide minerals using micro‐Raman spectroscopy. Journal of Raman Spectroscopy, 54 (11) 1201-1212 doi:10.1002/jrs.6536
Tani, Yukinori, Kumagai, Hanako, Tamari, Mako, Umezawa, Kazuhiro, Gotore, Obey, Miyata, Naoyuki (2024) Mineralization of Ni2+-Bearing Mn Oxide through Simultaneous Sequestration of Ni2+ and Mn2+ by Enzymatically Active Fungal Mn Oxides. Minerals, 14 (4) 330 doi:10.3390/min14040330
Feng, Yuzhou; Chen, Huayong; Pan, Yuanming; Deevsalar, Reza; Cheung, Leo Ka Long; Tunc, Ayetullah; Cao, Kenan; Zhu, Yuxiang; Feng, Renfei; Shakouri, Mohsen; et al. (2025) Binding mechanisms of Y and HREE sorption on birnessite: New insights into the formation and sustainable development of regolith-hosted REE deposits. American Mineralogist, 110 (6). doi:10.2138/am-2024-9451
Localities for Birnessite
Locality List




All localities listed without proper references should be considered as questionable.
Arctic Ocean | |
Murdmaa et al. (2000) | |
Bogdanov et al. (1995) +1 other reference | |
| Kravchishina et al. (2023) |
Kravchishina et al. (2023) | |
Kravchishina et al. (2023) | |
Atlantic Ocean | |
Varentsov et al. (2009, April) | |
Hein et al. (2016) | |
| Sergienko et al. (2024) |
Milinovic +6 other references | |
Canadian Mineralogist Vol.26 (1988) | |
| Yang et al. (2022) |
Australia | |
| Munro-Smith (2006) |
| Brown et al. (1992) |
| Brown et al. (1992) |
| Worner et al. (et al) |
| Ostwald (1981) +1 other reference |
| |
| |
| Jones et al. (2013) |
| Bridge et al. (1978) |
| Putzolu et al. (2018) |
Austria | |
| G. Blass (2001) |
| Strasser (1989) |
| R.Poeverlein (2016) |
| Taucher et al. (1992) |
Brazil | |
| White (2009) |
| Waber (1991) |
Canada | |
| Peatfield (n.d.) |
| Moncur et al. (2015) |
| Sabina (2015) +1 other reference |
| Grice (1989) +1 other reference |
| Horváth et al. (1998) |
Horváth et al. (1998) | |
Chile | |
| Pincheira et al. (1990) |
| Cook (1978) |
China | |
| Fengjun Ma (1986) |
| Ruixia Hao and Guangyue Guan (1995) |
| Ruixia Hao and Guangyue Guan (1995) |
| Guilin Institute of Metallurgical Geology et al. (1976) |
| Guilin Institute of Metallurgical Geology et al. (1976) |
Guilin Institute of Metallurgical Geology et al. (1976) | |
| Guilin Institute of Metallurgical Geology et al. (1976) |
| Jingqu Yao (1992) |
Jingqu Yao (1992) | |
| Jingqu Yao (1992) |
| Yuchun Yang (1990) |
Czech Republic | |
| Matýsek D (2021) |
| Jirásek J et al. (2019) |
| Kuttna +1 other reference |
| Jirásek J. et al. (2018) |
| Jirásek J. et al. (2018) |
Egypt | |
| Salama et al. (2012) |
| Afify et al. (2022) |
Finland | |
| Schwertmann |
France | |
| Wittern et al. (1997) |
Perseil (1975) | |
Perseil (1975) | |
| Pelleter et al. (2017) |
| Wittern et al. (1997) |
| Staszak et al. (2022) |
| Jordi Fabre |
P. Picot | |
| Bull. Soc. Franç. Minéralo. ... |
| Bull. Soc. Franç. Minéralo. ... |
P. Picot | |
| Bull. Soc. Franç. Minéralo. ... |
Bull. Soc. Franç. Minéralo. ... | |
| De Ascenção Guedes et al. (2002) |
| Bull. Soc. Franç. Minéralo. ... |
| De Ascenção Guedes et al. (2002) |
| BERBAIN. C et al. (2016) |
| Berbain et al. (2005) |
Germany | |
| Walenta (1992) |
| Lorenz (2004) |
| Petitjean et al. (2007) |
| Henrich et al. (2003) |
| Weiß (1990) |
| Held et al. (1993) |
| Wittern (2001) |
| Lapis 30 (7/8) |
Greece | |
| Pantó et al. (2001) |
| Michailidis et al. (1997) |
| Φωτιάδης (2010) |
| Φωτιάδης (2010) |
| Hein +2 other references |
| Altherr et al. (2013) |
Greenland | |
| Petersen (2001) |
Hungary | |
| Sándor et al. (1997) |
| Szakáll: Minerals of Szár Hill |
| Sándor et al. (2005) |
India | |
| Acharya et al. (1997) |
| Rao +1 other reference |
Indonesia | |
| Milési et al. (1999) |
Israel | |
Niedermayr (2000) | |
Italy | |
| Barresi et al. (2005) |
| Piccoli et al. (2007) |
| Sinisi et al. (2018) |
| doi.org (n.d.) +2 other references |
| Pipino (1984) |
| P. Mattias- M. Guerra (2008) |
| Boni et al. (1976) |
| Maletto et al. (2014) |
| Eckhardt et al. (1997) |
Rossi et al. (1980) | |
Eckhardt et al. (1997) | |
Japan | |
| Am Min 48:952-954 |
| - (n.d.) |
| - (n.d.) |
| - (n.d.) |
| - (n.d.) |
| Azami et al. (2025) |
Azami et al. (2025) | |
| Azami et al. (2025) |
| Nambu M (1967) |
| - (n.d.) |
- (n.d.) | |
- (n.d.) | |
Nambu et al. (1961) | |
- (n.d.) | |
| - (n.d.) |
| - (n.d.) |
- (n.d.) | |
- (n.d.) | |
- (n.d.) | |
- (n.d.) | |
| - (n.d.) |
| - (n.d.) |
- (n.d.) | |
| - (n.d.) |
| Anthony (1997) +1 other reference |
| - (n.d.) |
| Y. Okayama: Hydrothermal manganese oxides from southwest region of Aogashima island. Mining Geology (3) |
| Jose Carlos Mañuz Sanz collection |
| - (n.d.) |
Jordan | |
| Qatar Univ. Sci. J. 21:101-117. |
Kazakhstan | |
| Golubovskaya (2003) |
Mexico | |
| Cross (2006) |
| Ref.: Revista Mexicana de Ciencias Geológicas et al. (2000) |
| Lapis 2001 (1) |
Moldova | |
| Klimchouk (2012) |
Nazca Plate | |
Zawadzki et al. (2022) | |
New Zealand | |
Railton et al. (1990) | |
| de Ronde +16 other references |
North Macedonia | |
| Djordjevic et al. (2021) |
Norway | |
| Raade (2005) |
| Morad (1985) +1 other reference |
| Neumann (1959) |
| K.Eldjarn XRD MGM +1 other reference |
- (n.d.) | |
Pacific Ocean | |
| Glasby et al. (2006) |
| Mee Burns et al. (1978) |
Skowronek et al. (2021) +1 other reference | |
Mikhailik et al. (2021) +1 other reference | |
| Novikov et al. (2006) |
| Mikhailik +4 other references |
Deng et al. (2024) | |
Xu et al. (2024) | |
Yang et al. (2024) | |
| Volokhina et al. (2020) +3 other references |
Azami et al. (2024) | |
| Glasby et al. (2006) |
| Hein et al. (2010) |
Hein et al. (2010) | |
Hein et al. (2010) | |
| Lisitsyn et al. (1991) |
Mikhailik et al. (2021) | |
Mikhailik et al. (2021) | |
Papua New Guinea | |
| Zhigang Zeng et al. (12) |
Poland | |
| DOI: 10.1515/mipo-2016-0002 +2 other references |
| Ł. Kruszewski PXRD & pXRF data (paper in preparation) |
| Ł. Kruszewski PXRD & pXRF data (paper in preparation) |
| Ł. Kruszewski PXRD & pXRF data (paper in preparation) |
Portugal | |
| Oliveira et al. (2025) |
| Oliveira et al. (2025) |
| Oliveira et al. (2025) |
Romania | |
| Onac et al. (1997) |
| al României (2003) |
| Dumitras et al. (2000) +1 other reference |
| Munteanu (1993) +1 other reference |
| minerals-of-the-carpathians.eu (2008) |
Russia | |
| www.igem.ru (2001) |
| ... |
| Glasby et al. (2006) |
Glasby et al. (2006) | |
| Kasatkin et al. (2021) |
Slovakia | |
| Cílek V. +1 other reference |
South Africa | |
| Gutzmer (1996) |
| South African Micromount Society et al. (1989) |
Cairncross et al. (1995) | |
South Korea | |
| Choi et al. (2005) |
Spain | |
| Mata-Perelló (1979) |
| Merino et al. (2019) |
| Marino et al. (2019) |
| Rossi et al. (2010) |
| Abad +3 other references |
| A. Crespo & R. Lunar (1997) |
| Calvo (2009) |
| Mata Perelló |
Sweden | |
| Sjöberg S. Microbially mediated ... +2 other references |
| Folvik (2002) |
Switzerland | |
| Stalder et al. (1998) |
Stalder et al. (1998) | |
| The Canadian Mineralogist Vol. 44 (2006) +1 other reference |
Tonga | |
| Paropkari et al. (2010) |
| Stackelberg et al. (1990) |
UK | |
| Young (1988) +1 other reference |
| Elton et al. (2004) |
| Betterton (1989) +1 other reference |
Tindle (2008) | |
| Jones et al. (1956) +1 other reference |
| Nicholson (1989) |
| Notes about Gourock +1 other reference |
| Livingstone (2002) |
| |
Ukraine | |
| Chukhrov F.V. et al. (1987) |
USA | |
| Rocks & Minerals: 70 (5) |
| Anthony et al. (1995) |
Anthony et al. (1995) | |
| Bargar et al. (2009) |
| AmMin 56:1057 |
Morgan et al. (1969) +2 other references | |
| Huebner +3 other references |
| Anthony (1997) |
Eckel et al. (1997) | |
| Eckel et al. (1997) |
| Eckel et al. (1997) |
| Schooner (circa 1980s) |
| King et al. (1994) |
King (n.d.) | |
King (n.d.) | |
| www.irocks.com (2020) |
| Anthony (1997) |
| "Western Massachusetts Mineral ... +1 other reference |
| H.A. Barrett and M.P.S. Krekeler (2011) |
| Castor et al. (2004) |
Castor et al. (2004) | |
| Rocks & Minerals (Sept/Oct 1981) |
| Frondel et al. (1960) +1 other reference |
Frondel et al. (1960) +1 other reference | |
| Rocks & Min.: 60:229. |
| Jerry Cone Collection |
| Patrick Haynes |
| Geological Society of America Bulletin ... |
| Horton et al. (1981) +1 other reference |
| Michael W. Kieron collection |
Museum of Natural History & Planetarium | |
| Haynes (2000) |
| Mineral News: 13 (9) |
Thorne (n.d.) | |
| U.S. GEOLOGICAL SURVEY PROFESSIONAL ... +1 other reference |
| Bullock (1981) |
| Dietrich (1990) |
| Dietrich (1990) |
| Bowser |
Vanuatu | |
Iizasa et al. (1998) | |
Iizasa et al. (1998) |
Quick NavTopAbout BirnessiteUnique IdentifiersIMA Classification Classification Mineral SymbolsPhysical Properties Optical Data Chemistry Crystallography Crystal StructureX-Ray Powder DiffractionGeological EnvironmentType Occurrence SynonymsOther LanguagesRelationshipsCommon AssociatesStrunz-MindatFluorescence Other InformationInternet Links References Localities Locality List
"Shawn Creek", The Forks, Somerset County, Maine, USA