Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Vuoriyarvite-K

A valid IMA mineral species
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About Vuoriyarvite-KHide

Formula:
K2(Nb,Ti)2(Si4O12)(O,OH)2 · 4H2O
Colour:
White
Lustre:
Vitreous
Hardness:
Specific Gravity:
2.95
Crystal System:
Monoclinic
Name:
For the type locality, Vuoriyarvi alkai-ultrabasic massif, Kola Peninsula, Russia. Originally named simply vuoriyarvite, the suffix was added by the IMA in 2002 to denote the dominant extra-framework cation (potassium, in this case), following the recommended nomenclature for labuntsovite-group minerals.
Nb dominant analogue of Tsepinite-K.


Unique IdentifiersHide

Mindat ID:
7359
Long-form identifier:
mindat:1:1:7359:8

IMA Classification of Vuoriyarvite-KHide

Classification of Vuoriyarvite-KHide

9.CE.30b

9 : SILICATES (Germanates)
C : Cyclosilicates
E : [Si4O12]8- 4-membered single rings (vierer-Einfachringe), without insular complex anions
Dana 7th ed.:
78.0.0.0

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
Vyv-KIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of Vuoriyarvite-KHide

Vitreous
Transparency:
Translucent
Colour:
White
Streak:
White
Hardness:
4½ on Mohs scale
Hardness:
VHN30=315 - 435 kg/mm2 - Vickers
Tenacity:
Brittle
Cleavage:
None Observed
None
Parting:
Weak parting perpendicular to the elongation.
Fracture:
Irregular/Uneven
Density:
2.95(2) g/cm3 (Measured)    3.02(1) g/cm3 (Calculated)

Optical Data of Vuoriyarvite-KHide

Type:
Biaxial (+)
RI values:
nα = 1.649(2) nβ = 1.655(3) nγ = 1.759(3)
2V:
Measured: 20° (5)
Max. Birefringence:
δ = 0.110
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate
Dispersion:
Weak, r < v.
Optical Extinction:
Z = c; X = b.
Comments:
Negative elongation.

Chemistry of Vuoriyarvite-KHide

Mindat Formula:
K2(Nb,Ti)2(Si4O12)(O,OH)2 · 4H2O
Element Weights:
Element% weight
O42.830 %
Si16.708 %
K11.629 %
H1.199 %

Calculated from ideal end-member formula.
Common Impurities:
Na

Crystallography of Vuoriyarvite-KHide

Crystal System:
Monoclinic
Class (H-M):
m - Domatic
Space Group:
Bm
Setting:
Cm
Cell Parameters:
a = 14.692(4) Å, b = 14.164(4) Å, c = 7.859(3) Å
β = 117.87(2)°
Ratio:
a:b:c = 1.037 : 1 : 0.555
Unit Cell V:
1,445.74 ų (Calculated from Unit Cell)

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
7.10 Å(90)
4.98 Å(60)
3.262 Å(10)
3.151 Å(80b)
2.956 Å(60)
2.549 Å(40)
1.723 Å(40)

Geological EnvironmentHide

Paragenetic Mode(s):
Paragenetic ModeEarliest Age (Ga)
Stage 4b: Highly evolved igneous rocks>3.0
35 : Ultra-alkali and agpaitic igneous rocks

Type Occurrence of Vuoriyarvite-KHide

Synonyms of Vuoriyarvite-KHide

Other Language Names for Vuoriyarvite-KHide

Relationship of Vuoriyarvite-K to other SpeciesHide

Other Members of Vuoriyarvite Group:
Tsepinite-Ca(Ca,K,Na)2-x(Ti,Nb)2(Si4O12)(OH,O)2 · 4H2OMon. 2/m : B2/m
Tsepinite-KK2(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm
Tsepinite-NaNa2(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm
Tsepinite-SrSr(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm

Related Minerals - Strunz-mindat GroupingHide

9.CE.Dutkevichite-(Ce)NaZnBa2Ce2Ti2Si8O26F · H2OOrth. mm2 : Ama2
9.CE.KataniteBa3NbFe3Si2O14Trig. 3 2 : P3 2 1
9.CE.NiobobaotiteBa4(Ti2.5Fe2+1.5)Nb4Si4O28ClTet. 4/m : I41/a
9.CE.AmaterasuiteSr4Ti6Si4O23(OH)ClOrth. mmm (2/m 2/m 2/m) : Fddd
9.CE.SteiningeriteBa2Zr2(Si4O12)O2Tet. 4/mmm (4/m 2/m 2/m) : P4/mbm
9.CE.05PapagoiteCaCu[H3AlSi2O9]Mon. 2/m : B2/m
9.CE.10VerplanckiteBa4Mn2+2Si4O12(OH,H2O)3Cl3Hex. 6/mmm (6/m 2/m 2/m) : P6/mmm
9.CE.15BaotiteBa4(Ti,Nb,W)8O16(SiO3)4ClTet. 4/m : I41/a
9.CE.20NagashimaliteBa4(V,Ti)4B2Si8O27(O,OH)2ClOrth. mmm (2/m 2/m 2/m) : Pmmn
9.CE.20TaramelliteBa4(Fe3+,Ti,Fe2+,Mg)4(B2Si8O27)O2ClxOrth. mmm (2/m 2/m 2/m) : Pmmn
9.CE.20TitantaramelliteBa4(Ti,Fe3+,Fe2+,Mg)4(B2Si8O27)O2ClxOrth. mmm (2/m 2/m 2/m)
9.CE.25Bario-orthojoaquinite(Ba,Sr)4Fe2Ti2[Si4O12]2O2 · H2OOrth.
9.CE.25Byelorussite-(Ce)NaBa2Ce2MnTi2[Si4O12]2O2(F,OH) · H2OOrth. mm2 : Ama2
9.CE.25Joaquinite-(Ce)NaBa2Ce2FeTi2[Si4O12]2O2(OH,F) · H2OMon. 2 : B2
9.CE.25Orthojoaquinite-(La)NaBa2La2Fe2+Ti2[Si4O12]2O2(O,OH) · H2OOrth. mmm (2/m 2/m 2/m)
9.CE.25StrontiojoaquiniteSr2Ba2(Na,Fe)2Ti2[Si4O12]2O2(O,OH)2 · H2OMon.
9.CE.25Orthojoaquinite-(Ce)NaBa2Ce2FeTi2[Si4O12]2O2(O,OH) · H2OOrth.
9.CE.25Strontio-orthojoaquinite(Na,Fe)2Sr2Ba2Ti2[Si4O12]2O2(O,OH)2 · H2OOrth.
9.CE.30eLabuntsovite-MnNa4K4(Ba,K)2Mn2+(Ti,Nb)8(Si4O12)4(O,OH)8 · 10-12H2OMon. 2/m : B2/m
9.CE.30bTsepinite-NaNa2(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm
9.CE.30cGjerdingenite-NaK2Na(Nb,Ti)4(Si4O12)2(OH,O)4 · 5H2OMon. 2/m : B2/m
9.CE.30hAlsakharovite-ZnNaSrKZn(Ti,Nb)4(Si4O12)2(O,OH)4 · 7H2OMon. m : Bm
9.CE.30cBurovaite-Ca(Na,K)4Ca2(Ti,Nb)8(Si4O12)4(OH,O)8 · 12H2OMon. 2/m : B2/m
9.CE.30aNenadkevichite(Na,◻)8Nb4(Si4O12)2(O,OH)4 · 8H2OOrth. mmm (2/m 2/m 2/m) : Pbam
9.CE.30bTsepinite-SrSr(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm
9.CE.30cGjerdingenite-MnK2Mn2+(Nb,Ti)4(Si4O12)2(O,OH)4 · 6H2OMon. 2/m : B2/m
9.CE.30bParatsepinite-Na(Na,Sr,K,Ca)7(Ti,Nb)8(Si4O12)4(O,OH)8 · nH2O n ~ 8Mon. 2/m : B2/m
9.CE.30dLemmleinite-KK2(Ti,Nb)2(Si4O12)(OH,O)2 · 4H2OOrth.
9.CE.30cKarupmøllerite-Ca(Na,Ca,K)2Ca(Nb,Ti)4(Si4O12)2(O,OH)4 · 7H2OMon. 2/m : B2/m
9.CE.30cLepkhenelmite-Zn(Ba,K)2Zn(Ti,Nb)4(Si4O12)2(O,OH)4 · 7H2OMon. m : Bm
9.CE.30hGutkovaite-MnK2CaMn(Ti,Nb)4(Si4O12)2(O,OH)4 · 5H2OMon. m : Bm
9.CE.30eLabuntsovite-MgNa4K4(Ba,K)2Mg(Ti,Nb)8(Si4O12)4(O,OH)8 · 10H2OMon. 2/m : B2/m
9.CE.30eLabuntsovite-FeNa4K4(Ba,K)2Fe2+(Ti,Nb)8(Si4O12)4(O,OH)8 · 10H2OMon. 2/m : B2/m
9.CE.30cKuzmenkoite-ZnK2Zn(Ti,Nb)4(Si4O12)2(OH,O)4 · 6-8H2OMon. m : Bm
9.CE.30fParalabuntsovite-MgNa8K8Mg4Ti16(Si4O12)8(OH,O)16 · 20-24H2OMon. 2/m : B2/m
9.CE.30dLemmleinite-BaNa2K2Ba(Ti,Nb)4(Si4O12)2(O,OH)4 · 5H2OMon. 2/m : B2/m
9.CE.30gOrganovaite-MnK2Mn(Nb,Ti)4(Si4O12)2(O,OH)4 · 5-7H2OMon. 2/m : B2/m
9.CE.30gOrganovaite-ZnK2Zn(Nb,Ti)4(Si4O12)2(O,OH)4 · 6H2OMon. 2/m : B2/m
9.CE.30cGjerdingenite-FeK2Fe2+(Nb,Ti)4(Si4O12)2(O,OH)4 · 6H2OMon. 2/m : B2/m
9.CE.30aUnnamed (Ca-Na-ordered analogue of Korobitsynite)(Ca,Na)2(Ti,Nb)2(Si4O12)(OH,O)2 · 3-4H2OOrth. 2 2 2 : P21 21 2
9.CE.30gParakuzmenkoite-Fe(K,Ba)4Fe(Ti,Nb)8(Si4O12)4(O,OH)8 · 14H2OMon. 2/m : B2/m
9.CE.30aKorobitsynite(Na,◻)4Ti2(Si4O12)(O,OH)2 · 4H2OOrth. mmm (2/m 2/m 2/m) : Pbam
9.CE.30cKuzmenkoite-MnK2Mn2+(Ti,Nb)4(Si4O12)2(OH,O)4 · 5-6H2OMon. 2/m : B2/m
9.CE.30bTsepinite-KK2(Ti,Nb)2(Si4O12)(OH,O)2 · 3H2OMon. m : Bm
9.CE.30bParatsepinite-BaBa4(Ti,Nb)8(Si4O12)4(OH,O)8 · 8H2OMon. 2/m : B2/m
9.CE.30hNeskevaaraite-FeK3Na2Fe2+(Ti,Nb)4(Si4O12)2(O,OH)4 · 5-6 H2OMon. m : Bm
9.CE.30cGjerdingenite-CaK2Ca(Nb,Ti)4(Si4O12)2(O,OH)4 · 6H2OMon. 2/m : B2/m
9.CE.30bTsepinite-Ca(Ca,K,Na)2-x(Ti,Nb)2(Si4O12)(OH,O)2 · 4H2OMon. 2/m : B2/m
9.CE.45Natrokomarovite(Na,Ca,H)2Nb2Si2O10(OH,F)2 · H2OOrth.
9.CE.45Komarovite(Ca,Mn)(Nb,Ti)2[Si2O7](O,F)3 · 3.5H2OOrth. mmm (2/m 2/m 2/m) : Cmmm

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 11.6294% 3,605 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Fluorescence of Vuoriyarvite-KHide

Not fluorescent.

Other InformationHide

IR Spectrum:
The strongest IR absorption bands are at 468, 690, 938, 1090, 1135, 1645, and 3400 cm-1.
Notes:
Insoluble in dilute HCl and H2SO4.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for Vuoriyarvite-KHide

References for Vuoriyarvite-KHide

Localities for Vuoriyarvite-KHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Greenland
 
  • Kujalleq
    • Igaliku
      • Narsaarsuk Plateau
Petersen et al. (1996) +1 other reference
Namibia
 
  • Erongo Region
    • Arandis Constituency
Irene M. Abraham (2009)
Russia
 
  • Murmansk Oblast
    • Khibiny Massif
      • Eveslogchorr Mt
        • Astrophyllite Stream
Pekov et al. (2005)
Arzamastsev et al. (2008)
Arzamastsev et al. (2008)
Specimen from Dr. Igor Pekov
Pekov et al. (2004) +1 other reference
        • Kirovskii apatite mine
          • 252 m level
Pekov (2003)
American Mineralogist
    • Lovozersky District
Chukanov et al. (2001) +1 other reference
    • Northern Karelia
SUBBOTIN et al. (1998) +1 other reference
 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 13, 2025 13:42:14 Page updated: August 12, 2025 11:21:38
Go to top of page