Canasite
About Canasite
Unique Identifiers
IMA Classification of Canasite
Classification of Canasite
9 : SILICATES (Germanates)
D : Inosilicates
G : Inosilicates with 3-periodic single and multiple chains
78 : Unclassified Silicates
5 :
17 : Silicates Containing other Anions
1 : Silicates with fluoride (not containing Al)
Mineral Symbols
Symbol | Source | Reference |
---|---|---|
Cns | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Canasite
One, very perfect; another, perfect, at 118° to the first.
Optical Data of Canasite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Canasite
Previously given as K2Na4Ca5(Si12O30)(OH,F)4.
Crystallography of Canasite
β = 112°
X-Ray Powder Diffraction
d-spacing | Intensity |
---|---|
3.080 Å | (100b) |
2.907 Å | (80) |
1.641 Å | (80) |
4.69 Å | (70) |
4.81 Å | (60) |
2.359 Å | (60) |
4.20 Å | (50) |
Geological Environment
Paragenetic Mode | Earliest Age (Ga) |
---|---|
Stage 4b: Highly evolved igneous rocks | >3.0 |
35 : Ultra-alkali and agpaitic igneous rocks |
Type Occurrence of Canasite
A.E. Fersman Mineralogical Museum, Academy of Sciences, Moscow, Russia, 61128029.
National Museum of Natural History, Washington, D.C., USA, 136472.
Other Language Names for Canasite
Relationship of Canasite to other Species
Fluorcanasite | K3Na3Ca5Si12O30F4 · H2O | Mon. m : Bm |
Frankamenite | K3Na3Ca5(Si12O30)(F,OH)4 · H2O | Tric. 1 : P1 |
Common Associates
4 photos of Canasite associated with Charoite | (K,Sr)15-16(Ca,Na)32[Si6O11(O,OH)6]2[Si12O18(O,OH)12]2[Si17O25(O,OH)18]2(OH,F)4 · ~3H2O |
3 photos of Canasite associated with Biotite | K(Fe2+/Mg)2(Al/Fe3+/Mg/Ti)([Si/Al/Fe]2Si2O10)(OH/F)2 |
3 photos of Canasite associated with Microcline | K(AlSi3O8) |
3 photos of Canasite associated with Aegirine | NaFe3+Si2O6 |
3 photos of Canasite associated with Tinaksite | K2Na(Ca,Mn2+)2TiO[Si7O18(OH)] |
2 photos of Canasite associated with Titanite | CaTi(SiO4)O |
1 photo of Canasite associated with Aegirine-augite | (NaaCabFe2+cMgd)(Fe3+eAlfFe2+gMgh)Si2O6 |
1 photo of Canasite associated with Delhayelite | (Na,K)10Ca5Al6Si32O80(Cl2,F2,SO4)3 · 18H2O |
Related Minerals - Strunz-mindat Grouping
9.DG. | Barrydawsonite-(Y) | Na1.5Y0.5CaSi3O8(OH) |
9.DG. | Paratobermorite | Ca5AlSi5O16(OH) · 5H2O |
9.DG. | Calcinaksite | KNaCa(Si4O10) · H2O |
9.DG. | Alvesite | NaKZrSi6O15 · 2H2O |
9.DG.02 | Steedeite | NaMn2[Si3BO9](OH)2 |
9.DG.02 | Nolzeite | NaMn2[Si3BO9](OH)2 · 2H2O |
9.DG.05 | Murakamiite | LiCa2Si3O8(OH) |
9.DG.05 | Serandite | NaMn2+2Si3O8(OH) |
9.DG.05 | Bustamite | CaMn2+(Si2O6) |
9.DG.05 | Pectolite | NaCa2Si3O8(OH) |
9.DG.05 | Tanohataite | LiMn2Si3O8(OH) |
9.DG.05 | Dalnegorskite | Ca5Mn(Si3O9)2 |
9.DG.05 | Wollastonite-1A | CaSiO3 |
9.DG.05 | Wollastonite | Ca3(Si3O9) |
9.DG.05 | Ferrobustamite | CaFe2+(Si2O6) |
9.DG.05 | Schizolite | NaCaMnSi3O8(OH) |
9.DG.07 | Cascandite | CaScSi3O8(OH) |
9.DG.08 | Plombièrite | Ca5Si6O16(OH)2 · 7H2O |
9.DG.10 | Clinotobermorite | Ca5Si6O17 · 5H2O |
9.DG.10 | Riversideite | Ca5Si6O16(OH)2 · 2H2O |
9.DG.10 | Tobermorite | Ca5Si6O17 · 5H2O |
9.DG.12 | Jusite | Na2Ca15Al4Si16O54 · 17H2O |
9.DG.12 | Kenotobermorite | Ca4Si6O15(OH)2 · 5H2O |
9.DG.15 | Foshagite | Ca4(Si3O9)(OH)2 |
9.DG.20 | Jennite | Ca9(Si3O9)2(OH)8 · 8H2O |
9.DG.20 | Kamenevite | K2TiSi3O9 · H2O |
9.DG.25 | Paraumbite | K3Zr2H(Si3O9)2 · nH2O |
9.DG.25 | Umbite | K2(Zr,Ti)Si3O9 · H2O |
9.DG.30 | Sørensenite | Na4SnBe2Si6O16(OH)4 |
9.DG.32 | Escheite | Ca2NaMnTi5[Si12O34]O2(OH)3 · 12H2O |
9.DG.35 | Xonotlite | Ca6(Si6O17)(OH)2 |
9.DG.40 | Hillebrandite | Ca2(SiO3)(OH)2 |
9.DG.45 | Zorite | Na8(Ti,Nb)5(Si6O17)2(OH,O)5 · 14H2O |
9.DG.45 | Chivruaiite | Ca4(Ti,Nb)5(Si6O17)2(OH,O)5 · 13-14H2O |
9.DG.50 | Haineaultite | (Na,Ca)5Ca(Ti,Nb)5(Si6O17)2(OH,F)8 · 5H2O |
9.DG.55 | Epididymite | Na2Be2Si6O15 · H2O |
9.DG.60 | Eudidymite | Na2Be2Si6O15 · H2O |
9.DG.65 | Elpidite | Na2ZrSi6O15 · 3H2O |
9.DG.65 | Patynite | NaKCa4[Si9O23] |
9.DG.67 | Whelanite | Cu2+2Ca6[Si6O17(OH)](CO3)(OH)3 · 2H2O |
9.DG.70 | Enricofrancoite | KNaCaSi4O10 |
9.DG.70 | Yusupovite | Na2Zr(Si6O15) · 2.5H2O |
9.DG.70 | Litidionite | KNaCuSi4O10 |
9.DG.70 | Fenaksite | (K,Na)4(Fe,Mn)2(Si4O10)2(OH,F) |
9.DG.70 | Manaksite | KNaMnSi4O10 |
9.DG.75 | Senkevichite | CsKNaCa2TiO[Si7O18](OH) |
9.DG.75 | Tinaksite | K2Na(Ca,Mn2+)2TiO[Si7O18(OH)] |
9.DG.75 | Tokkoite | K2Ca4[Si7O18(OH)](OH,F) |
9.DG.80 | Fluorcanasite | K3Na3Ca5Si12O30F4 · H2O |
9.DG.85 | Miserite | K1.5-x(Ca,Y,REE)5(Si6O15)(Si2O7)(OH,F)2 · yH2O |
9.DG.90 | Frankamenite | K3Na3Ca5(Si12O30)(F,OH)4 · H2O |
9.DG.92 | Charoite | (K,Sr)15-16(Ca,Na)32[Si6O11(O,OH)6]2[Si12O18(O,OH)12]2[Si17O25(O,OH)18]2(OH,F)4 · ~3H2O |
9.DG.95 | Yuksporite | K4(Ca,Na)14(Sr,Ba)2(◻,Mn,Fe)(Ti,Nb)4(O,OH)4(Si6O17)2(Si2O7)3(H2O,OH)3 |
9.DG.97 | Eveslogite | (Na,K,Ca,Sr,Ba)48 [(Ti,Nb,Mn,Fe2+)12Si48O144(OH)12](F,OH,Cl)14 |
Radioactivity
Element | % Content | Activity (Bq/kg) | Radiation Type |
---|---|---|---|
Uranium (U) | 0.0000% | 0 | α, β, γ |
Thorium (Th) | 0.0000% | 0 | α, β, γ |
Potassium (K) | 9.2235% | 2,859 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
Distance | Dose rate | Risk |
---|---|---|
1 cm | ||
10 cm | ||
1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Canasite in petrology
Internet Links for Canasite
Please feel free to link to this page.
References for Canasite
Localities for Canasite
Locality List




All localities listed without proper references should be considered as questionable.
Namibia | |
| ... |
Russia | |
| Solyanik et al. (2008) +1 other reference |
Wolfgang Henckel | |
| [World of Stones 95:5-6 |
Pekov (1998) | |
Mineralogical Society of America - ... | |
| Pekov (1998) |
Eveslogchorr Mt, Khibiny Massif, Murmansk Oblast, Russia