Reference Type | Journal (article/letter/editorial) |
---|
Title | Genesis and mineralization processes of the Hua’aobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Constraints from in situ sulfur isotopes and trace elements in pyrite |
---|
Journal | Ore Geology Reviews |
---|
Authors | Wang, Hu | Author |
---|
Lü, Zhicheng | Author |
Dong, Shuyi | Author |
Li, Yongsheng | Author |
Sun, Hairui | Author |
Zhang, Banglu | Author |
Han, Jilong | Author |
Liu, Hong | Author |
Du, Wange | Author |
Liu, Yongqiang | Author |
Cheng, Haiming | Author |
Year | 2025 | Volume | < 178 > |
---|
Page(s) | 106472 |
---|
URL | |
---|
DOI | doi:10.1016/j.oregeorev.2025.106472Search in ResearchGate |
---|
| Generate Citation Formats |
Classification | Not set | LoC | Not set |
---|
Mindat Ref. ID | 18008908 | Long-form Identifier | mindat:1:5:18008908:0 |
---|
|
GUID | 0 |
---|
Full Reference | Wang, Hu, Lü, Zhicheng, Dong, Shuyi, Li, Yongsheng, Sun, Hairui, Zhang, Banglu, Han, Jilong, Liu, Hong, Du, Wange, Liu, Yongqiang, et al. (2025) Genesis and mineralization processes of the Hua’aobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Constraints from in situ sulfur isotopes and trace elements in pyrite. Ore Geology Reviews, 178. 106472 doi:10.1016/j.oregeorev.2025.106472 |
---|
Plain Text | Wang, Hu, Lü, Zhicheng, Dong, Shuyi, Li, Yongsheng, Sun, Hairui, Zhang, Banglu, Han, Jilong, Liu, Hong, Du, Wange, Liu, Yongqiang, et al. (2025) Genesis and mineralization processes of the Hua’aobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Constraints from in situ sulfur isotopes and trace elements in pyrite. Ore Geology Reviews, 178. 106472 doi:10.1016/j.oregeorev.2025.106472 |
---|
In | Link this record to the correct parent record (if possible) |
---|
Abstract/Notes | The Hua’aobaote Pb–Zn–Ag deposit in the Southern Great Xing’an Range (SGXR) was recently discovered, and its orebodies occur in Permian tuffaceous siltstone, sandstone, siltstone, and slate and are strictly controlled by faults. The aim of this study is conduct trace element and sulfur isotope analyses of pyrite to accurately delineate the mineralization process from magmatic to hydrothermal stages, enhancing the understanding of the genesis of the deposit. The research findings reveal that the mineralization process can be categorized into three stages: pyrite + quartz (Py1), quartz + pyrite + arsenopyrite + chalcopyrite + cassiterite + pyrrhotite + galena + sphalerite + silver minerals (Py2), and quartz + pyrite + arsenopyrite + marcasite + calcite (Py3). Within these stages, Py1 displays the highest concentrations of Se and Ni (averages of 352.05 ppm and 28.71 ppm), whereas other trace elements are relatively scarce. Conversely, the total trace element contents in Py2 and Py3 significantly increase, particularly those of Cu, Sn, Ag, Pb, Zn, Bi, Mn, As, and Sb. Notably, Py2 has the highest concentrations of Co (average of 20.39 ppm), Bi (average of 14.34 ppm), and Sn (average of 17.78 ppm), whereas Py3 is characterized by a uniquely high Mn concentration (average of 154.34 ppm). The δ34S values for pyrite, ranging from −2.96 ‰ to 1.55 ‰, are characteristics of deep magma sources. Py1 is distinguished by high Se and low As contents, elevated Se/As and Co/Sb ratios, and comparatively low Sb/Bi and As/Ag ratios. These characteristics suggest that Py1 comprises magmatic pyrite and hydrothermal pyrite, formed through the evolution of porphyry-type magmatic fluids. In contrast, Py2 and Py3 are hydrothermal pyrites that have high As and low Se contents, low Se/As and Co/Sb ratios, and high Sb/Bi and As/Ag ratios. These features indicate their formation in an epithermal environment, likely resulting from interactions between magmatic fluids and host rocks or meteoric water. An analysis of mineral assemblages, trace elements, and sulfur isotopes indicates that the mineralization occurred from mid- to high-temperature, mid-sulfidation porphyry magmatic fluids to low-temperature, low-sulfidation hydrothermal fluids, indicating that the ore-forming materials originated predominantly from porphyry magma. Accordingly, the Hua’aobaote deposit is categorized as a distal, mid- to low-temperature, mid- to low-sulfidation epithermal vein deposit linked to a porphyry-type magmatic–hydrothermal system. |
---|
These are the references the publisher has listed as being connected to the article. Please check the article itself for the full list of references which may differ. Not all references are currently linkable within the Digital Library.
 | |
 | |
| Bajwah (1987) Australia. Mineralium Deposita. Trace element distribution, Co/Ni ratios and deposit, New South Wales 22, 292 |
| Berg (1945) GFF Die metallischen Rohstoffe, ihre Lagerungsverhaltnisse und ihre wirtschaftliche Bedeutung 67, 113 |
 | |
 | |
 | |
| Chen (2014) J Jilin Univ (earth Sci Ed):1–52 Geochemical characteristics and genetic mechanism of bianjiadayuan Pb-Zn-Ag deposit in Linxi county, Inner Mongolia (dissertation for master degree) |
| Chen (2011) Inner Mongolia. Earth Science (journal of China University of Geo Sciences) Characteristics of Primary Halo Zonation and Prediction Pattern of Deep Orebody of the Huaaobaote Pb–Zn–Ag Polymetallic Deposit 36, 236 |
| Chen (2008) Nonferrous Met (min Sect). Geological and mineralizing fluid’s characters of Hua’aobaote silver–polymetallic ore deposit 60, 32 |
 | Chen, Gongzheng; Wu, Guang; Li, Tiegang; Liu, Ruilin; Li, Ruihua; Li, Yinglei; Yang, Fei (2021) Mineralization of the Daolundaba Cu–Sn–W–Ag deposit in the southern Great Xing'an Range, China: Constraints from geochronology, geochemistry, and Hf isotope. Ore Geology Reviews, 133. doi:10.1016/j.oregeorev.2021.104117 |
| Chen (2023) Acta Geol. Sin. Metallogeny of the Huaaaobaote Ag–polymetallic Deposit in Inner Mongolia: Constraints from zircon and cassiterite U–Pb dating 39, 1771 |
| Chen (2014) O Isotopes. Journal of Jilin University (earth Sci Ed) Genetic study on the Hua’aobaote Pb–Zn–Ag polymetallic deposit in Inner Mongolia: Evidence from fluid inclusions and S, Pb, H 44, 1478 |
 | |
 | Deditius, Artur P., Utsunomiya, Satoshi, Renock, Devon, Ewing, Rodney C., Ramana, Chintalapalle V., Becker, Udo, Kesler, Stephen E. (2008) A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance. Geochimica et Cosmochimica Acta, 72 (12) 2919-2933 doi:10.1016/j.gca.2008.03.014 |
 | |
 | |
| Du, Q.S., 2018. Prospecting model and metallogenic prediction of silver polymetallic deposits in Great Xing’an Range area, Inner Mongolia (dissertation for doctor degree). Beijing: China University of Geosciences (Beijing):1–148. (in Chinese). |
 | |
| Feng (1994) Jilin Geology. The stable isotopic geochemistry of the Dajing polymetallic deposit 13, 60 |
 | Franchini, Marta; McFarlane, Christopher; Maydagán, Laura; Reich, Martin; Lentz, David R.; Meinert, Lawrence; Bouhier, Verónica (2015) Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geology Reviews, 66. doi:10.1016/j.oregeorev.2014.10.022 |
 | Fu, Jiali, Hu, Zhaochu, Zhang, Wen, Yang, Lu, Liu, Yongsheng, Li, Ming, Zong, Keqing, Gao, Shan, Hu, Shenghong (2016) In situ sulfur isotopes (δ 34 S and δ 33 S) analyses in sulfides and elemental sulfur using high sensitivity cones combined with the addition of nitrogen by laser ablation MC-ICP-MS. Analytica Chimica Acta, 911. 14-26 doi:10.1016/j.aca.2016.01.026 |
 | |
 | George, Luke L.; Biagioni, Cristian; Lepore, Giovanni Orazio; Lacalamita, Maria; Agrosì, Giovanna; Capitani, Gian Carlo; Bonaccorsi, Elena; d'Acapito, Francesco (2019) The speciation of thallium in (Tl,Sb,As)-rich pyrite. Ore Geology Reviews, 107. doi:10.1016/j.oregeorev.2019.02.031 |
 | Groves, D. I., Bierlein, F. P., Meinert, L. D., Hitzman, M. W. (2010) Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 105 (3) 641-654 doi:10.2113/gsecongeo.105.3.641 |
 | Groves, David I., Santosh, M., Deng, Jun, Wang, Qingfei, Yang, Liqiang, Zhang, Liang (2020) A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55 (2) 275-292 doi:10.1007/s00126-019-00877-5 |
 | Guan, Qing-Bin, Liu, Zheng-Hong, Wang, Xing-An, Wang, Bin, Wang, Shi-Jie, Chen, Yu-Song, Feng, Zhi-Qiang (2018) Zircon U–Pb–Hf isotopic and geochemical characteristics of the Xierzi biotite monzogranite pluton, Linxi, Inner Mongolia and its tectonic implications. Geoscience Frontiers, 9 (2) 505-516 doi:10.1016/j.gsf.2017.05.004 |
| Guo (2010) (in Chinese) Geochemistry and genesis of Hua’aobaote Ag–Pb–Zn polymetallic deposit, Inner Mongolia (dissertation for master degree). China University of Geosciences (Beijing):1–14 |
| Han (2010) (in Chinese) Characteristic of Primary Halos and Prediction of Deep Ore-body of The Huaaobaote Pb–Zn–Ag Polymetallic Deposit,Inner Mongolia (dissertation for master degree). China University of Geosciences (Beijing):1–46 |
 | |
| He (2019) Acta Petrol. Sin. The sources of ore-forming materials and genesis of the Changtuxili Ag–Pb–Zn–Mn polymetallic deposit in the middle-southern segment of Da Hinggan Mountains: Constraints from S–Pb–C–O isotope geochemistry 93, 2037 |
 | Huston, David L., Sie, Soey H., Suter, Gary F., Cooke, David R., Both, Ross A. (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; Part I, Proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and Part II, Selenium levels in pyrite; comparison with delta 34 S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90 (5) 1167-1196 doi:10.2113/gsecongeo.90.5.1167 |
 | Jefferson, Mayra, Yenial-Arslan, Unzile, Evans, Catherine, Curtis-Morar, Catherine, O'Donnell, Roxanne, Parbhakar-Fox, Anita, Forbes, Elizaveta (2023) Effect of pyrite textures and composition on flotation performance: A review. Minerals Engineering, 201. Elsevier BV. 108234 doi:10.1016/j.mineng.2023.108234 |
 | Jia, Li, Wu, Chang-Zhi, Lei, Ru-Xiong, Brzozowski, Matthew J., Wang, Yu-Ting, Qian, Zhuang-Zhi, Deng, Xiao-Hua (2024) Geochronology and geochemistry of zircon and columbite–tantalite group minerals from the Weilasituo Sn–polymetallic deposit, northeastern China: Implications for the relationship between mineralization and the magmatic–hydrothermal transition. Ore Geology Reviews, 168. 106047 doi:10.1016/j.oregeorev.2024.106047 |
| Jiang (2019) (in Chinese) Research on Mineralization of the Bianjiadayuan Tin Polymetallic Deposit, Inner Mongolia, China (dissertation for master degree). China University of Geosciences (Beijing):1–44 |
| Jiang (2010) Inner Mongolia. Mineral Deposits Sulfur and lead isotopic compositions of Bairendaba and Weilasituo silver-polymetallic deposits 29, 101 |
 | |
 | |
 | |
 | Large, R. R, Danyushevsky, L., Hollit, C., Maslennikov, V., Meffre, S., Gilbert, S., Bull, S., Scott, R., Emsbo, P., Thomas, H., Singh, B., Foster, J. (2009) Gold and Trace Element Zonation in Pyrite Using a Laser Imaging Technique: Implications for the Timing of Gold in Orogenic and Carlin-Style Sediment-Hosted Deposits. Economic Geology, 104 (5) 635-668 doi:10.2113/gsecongeo.104.5.635 |
 | |
 | |
| Li (2019) (in Chinese) The characteristics of trace elements, sulfur and lead isotope of ore minerals and mineralization genesis of the Shuangjianzishan Pb–Zn–Ag deposit in Inner Mongolia, China (dissertation for master degree). China University of Geosciences (Beijing):1–68 |
| Li (2023) NE China. Minerals. Age, Fluid Inclusion, and H–O–S–Pb Isotope Geochemistry of the Superlarge Huaaobaote Ag–Pb–Zn Deposit in the Southern Great Xing’an Range 13, 939 |
 | ZhenLi, LI, , , Lin, YE, YuSi, HU, Chen, WEI, ZhiLong, HUANG, HongLiang, NIAN, JinJun, CAI, Leonid, DANYUSHEVSKY (2019) The trace (dispersed) elements in pyrite from the Fule Pb-Zn deposit, Yunnan Province, China, and its genetic information: A LA-ICPMS study. Acta Petrologica Sinica, 35 (11). 3370-3384 doi:10.18654/1000-0569/2019.11.07 |
 | Liu, Yongsheng, Hu, Zhaochu, Gao, Shan, Günther, Detlef, Xu, Juan, Gao, Changgui, Chen, Haihong (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257 (1) 34-43 doi:10.1016/j.chemgeo.2008.08.004 |
 | |
| Liu (2001) China. Earth Science Frontiers. The regional metallogeny of Da Hinggan Ling 11, 269 |
| Liu, Y.F., 2009. Metallogenic Study of Bairendaba Ag Polymetallic Deposit in Hexigten Banner, Inner Mongolia (dissertation for master degree). Chin Acad Geol Sci:1–88 (in Chinese). |
 | |
| Meyer (1990) S. Afr. J. Geol. Ni, Co and other trace elements in pyrite, Witwatersrand 93, 70 |
 | Mi, Kui‐Feng, Lü, Zhi‐Cheng, Yan, Ting‐Jie, Yao, Xiao‐Feng, Ma, Yi‐Xing, Lin, Cheng‐Gui (2020) Zircon geochronological and geochemical study of the Baogaigou Tin deposits, southern Great Xing'an Range, Northeast China: Implications for the timing of mineralization and ore genesis. Geological Journal, 55 (7). 5062-5081 doi:10.1002/gj.3729 |
 | |
| Murowchick (1987) Am. Mineral. Effects of temperature and degree of supersaturation on pyrite morphology 72, 1241 |
 | |
| Ohmoto (1997) Sulfur and carbon isotopes , 517 |
| Ouyang (2013) |
 | Ouyang, Hegen, Mao, Jingwen, Zhou, Zhenhua, Su, Huiming (2015) Late Mesozoic metallogeny and intracontinental magmatism, southern Great Xing'an Range, northeastern China. Gondwana Research, 27 (3) 1153-1172 doi:10.1016/j.gr.2014.08.010 |
| Not Yet Imported: Geochemical Perspectives Letters - journal-article : 10.7185/geochemlet.2112
If you would like this item imported into the Digital Library, please contact us quoting Journal ID |
 | |
 | Reich, Martin, Deditius, Artur, Chryssoulis, Stephen, Li, Jian-Wei, Ma, Chan-Qiang, Parada, Miguel Angel, Barra, Fernando, Mittermayr, Florian (2013) Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochimica et Cosmochimica Acta, 104. 42-62 doi:10.1016/j.gca.2012.11.006 |
 | |
 | |
 | |
 | |
 | |
 | Shen, P., Shen, Y., Pan, H., Wang, J., Zhang, R., Zhang, Y. (2010) Baogutu Porphyry Cu-Mo-Au Deposit, West Junggar, Northwest China: Petrology, Alteration, and Mineralization. Economic Geology, 105 (5) 947-970 doi:10.2113/econgeo.105.5.947 |
 | |
 | Song, Kai-Rui, Tang, Li, Zhang, Shou-Ting, Santosh, M., Spencer, Christopher J., Zhao, Yu, Li, Hao-Xing, Wang, Liang, Zhang, An-Li, Sun, Yin-Qiang (2019) Genesis of the Bianjiadayuan Pb–Zn polymetallic deposit, Inner Mongolia, China: Constraints from in-situ sulfur isotope and trace element geochemistry of pyrite. Geoscience Frontiers, 10 (5) 1863-1877 doi:10.1016/j.gsf.2019.02.004 |
 | Steadman, Jeffrey A.; Large, Ross R.; Olin, Paul H.; Danyushevsky, Leonid V.; Meffre, Sebastien; Huston, David; Fabris, Adrian; Lisitsin, Vladimir; Wells, Tristan (2021) Pyrite trace element behavior in magmatic-hydrothermal environments: An LA-ICPMS imaging study. Ore Geology Reviews, 128. doi:10.1016/j.oregeorev.2020.103878 |
 | Sykora, Stephanie, Cooke, David R., Meffre, Sebastien, Stephanov, Aleksandr S., Gardner, Karyn, Scott, Robert, Selley, David, Harris, Anthony C. (2018) Evolution of Pyrite Trace Element Compositions from Porphyry-Style and Epithermal Conditions at the Lihir Gold Deposit: Implications for Ore Genesis and Mineral Processing. Economic Geology, 113 (1) 193-208 doi:10.5382/econgeo.2018.4548 |
 | |
| Tao (2017) (in Chinese) In situ LA–ICP–MS trace element analysis of sulfides from Weilasituo polymetallic deposit and its significance (dissertation for master degree). China University of Geosciences (Beijing):1–58 |
| Wang (2014) Inner Mongolia. Geology in China. A study of isotope geochemistry and sources of ore-forming materials of the Bianjiadayuan silver polymetallic deposit in Linxi 41, 1288 |
 | WANG, Chengyang, LIU, Guanghu, SUN, Zhenjun, LIU, Jie, LI, Jianfeng, LIANG, Xinyang (2019) Geology, Mineralization, Fluid Inclusion and Stable Isotope of the Early Cretaceous Sn and Associated Metal Deposits in the Southern Great Xing'an Range, NE China: A Review. Acta Geologica Sinica - English Edition, 93 (5) 1522-1543 doi:10.1111/1755-6724.14390 |
 | |
 | |
| Wu (2023) NE China. Ore Geology Reviews. In situ trace element compositions of sulfides constraining the genesis of the worldclass Shuangjianzishan Ag–Pb–Zn deposit 162 |
 | Xie, Wei; Zeng, Qing-Dong; Huang, Liang-Liang; Zhou, Ling-Li; Fan, Hong-Rui; Wu, Jin-Jian; Wang, Rui-Liang; Zhu, He-Ping; Lan, Ting-Guang; Meng, Bo; et al. (2022) Ore genesis of the Narenwula quartz-vein type W polymetallic deposit in the southern Great Xing’an Range W belt, NE China: Constraints from wolframite geochronology and individual fluid inclusion analysis. Ore Geology Reviews, 149. doi:10.1016/j.oregeorev.2022.105100 |
| Yang (2022) NE China. Ore Geology Reviews. Age, fluid inclusion, and H–O–S–Pb isotope geochemistry of the Baiyinchagan Sn–Ag–polymetallic deposit in the southern Great Xing'an Range 150 |
| Yao (2012) J. Jilin Univ. (Earth Sci. Ed.) Sulfur and lead isotopic compositions of the polymetallic deposits in the southern Daxing'anling: Implications for metal sources 42, 362 |
| Yao (2017) China. Acta Petrol. Sin. Zircon U-Pb age, geochemical and Nd-Hf isotopic characteristics of quartz porphyry in the Baiyinchagan Sn polymetallic deposit, Inner Mongolia, southern Great Xing'an Range 33, 3183 |
 | |
| Zeng (2016) J. Jilin Univ. (Earth Sci. Ed.) Poly-metal mineralization and exploration potential in southern segment of the Da Hinggan Mountains 46, 1100 |
 | Zhai, Degao, Liu, Jiajun, Wang, Jianping, Yang, Yongqiang, Zhang, Hongyu, Wang, Xilong, Zhang, Qibin, Wang, Gongwen, Liu, Zhenjiang (2014) Zircon U–Pb and molybdenite Re–Os geochronology, and whole-rock geochemistry of the Hashitu molybdenum deposit and host granitoids, Inner Mongolia, NE China. Journal of Asian Earth Sciences, 79. 144-160 doi:10.1016/j.jseaes.2013.09.008 |
 | Zhai, Degao, Liu, Jiajun, Zhang, Anli, Sun, Yinqiang (2017) U-Pb, Re-Os, AND 40Ar/39Ar GEOCHRONOLOGY OF PORPHYRY Sn ± Cu ± Mo AND POLYMETALLIC (Ag-Pb-Zn-Cu) VEIN MINERALIZATION AT BIANJIADAYUAN, INNER MONGOLIA, NORTHEAST CHINA: IMPLICATIONS FOR DISCRETE MINERALIZATION EVENTS. Economic Geology, 112 (8) 2041-2059 doi:10.5382/econgeo.2017.4540 |
 | Zhai, Degao, Liu, Jiajun, Cook, Nigel J., Wang, Xilong, Yang, Yongqiang, Zhang, Anli, Jiao, Yingchun (2019) Mineralogical, textural, sulfur and lead isotope constraints on the origin of Ag-Pb-Zn mineralization at Bianjiadayuan, Inner Mongolia, NE China. Mineralium Deposita, 54 (1) 47-66 doi:10.1007/s00126-018-0804-6 |
 | Zhai, Degao, Williams-Jones, Anthony E., Liu, Jiajun, Selby, David, Voudouris, Panagiotis C., Tombros, Stylianos, Li, Kuan, Li, Peilin, Sun, Hongjun (2020) The Genesis of the Giant Shuangjianzishan Epithermal Ag-Pb-Zn Deposit, Inner Mongolia, Northeastern China. Economic Geology, 115 (1) 101-128 doi:10.5382/econgeo.4695 |
 | Zhang, Yong-Wen, Fan, Hong-Rui, Santosh, M., Xie, Lie-Wen, Hu, Fang-Fang, Liu, Xuan, Hu, Huan-Long, Li, Xing-Hui (2022) Iron and sulfur isotope fractionation during pyrite dissolution-reprecipitation revealed by in-situ isotopic analyses in the Muping gold deposit (Jiaodong, China) Journal of Asian Earth Sciences, 230. 105217pp. doi:10.1016/j.jseaes.2022.105217 |
 | |
| Zhang (2010) Chinese Journal of Engineering Geophysics. Research on metallogenic characteristics and geophysical and geochemical exploration progress of Huaaobaote silver-lead-zinc deposit in Inner Mongolia 2, 220 |
| Zhao (2015) Mod. Min. Characteristics of the cryptoblastic breccia and subrhyolite at the Huaaobaote silver–lead–zinc deposit 31, 137 |
| Zhou (2022) Earth Science Frontier. Metallogenic regularity and ore deposit model of tin polymetallic deposit in the southern of great xing’an range 29, 176 |
| Zhou (2019) Inner Mongolia. Mineral Deposits. Formation mechanism and intrinsic genetic relationship between tin-tungsten-lithium mineralization and peripheral lead–zinc–silver–copper mineralization: Exemplified by Weilasituo tin–tungsten–lithium polymetallic deposit 38, 1004 |
| Zhu (2016) Inner Mongolia. Geology in China. Geological and geochemical characteristics of the Weilasito Sn–Zn deposit 43, 188 |
These are possibly similar items as determined by title/reference text matching only.