Englishite
About Englishite
Unique Identifiers
IMA Classification of Englishite
Classification of Englishite
8 : PHOSPHATES, ARSENATES, VANADATES
D : Phosphates, etc. with additional anions, with H2O
H : With large and medium-sized cations, (OH, etc.):RO4 < 1:1
42 : HYDRATED PHOSPHATES, ETC.CONTAINING HYDROXYL OR HALOGEN
13 : Miscellaneous
19 : Phosphates
8 : Phosphates of Al and other metals
Mineral Symbols
Symbol | Source | Reference |
---|---|---|
Egs | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Englishite
On {001}, perfect, micaceous.
Optical Data of Englishite
Based on recorded range of RI values above.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Chemistry of Englishite
Crystallography of Englishite
β = 111.25°
X-Ray Powder Diffraction
d-spacing | Intensity |
---|---|
8.94 Å | (100) |
17.66 Å | (90) |
2.84 Å | (80) |
5.57 Å | (60) |
2.96 Å | (60) |
2.68 Å | (60) |
1.71 Å | (50) |
3.85 Å | (40) |
2.34 Å | (40) |
3.08 Å | (30) |
2.54 Å | (30) |
1.58 Å | (30) |
1.36 Å | (30) |
1.08 Å | (30) |
0.98 Å | (30) |
Geological Environment
Paragenetic Mode | Earliest Age (Ga) |
---|---|
Near-surface Processes | |
21 : Chemically precipitated carbonate, phosphate, iron formations | |
Stage 4b: Highly evolved igneous rocks | >3.0 |
34 : Complex granite pegmatites | |
Stage 7: Great Oxidation Event | <2.4 |
47a : [Near-surface hydration of prior minerals] | |
47c : [Carbonates, phosphates, borates, nitrates] |
Type Occurrence of Englishite
Other Language Names for Englishite
Common Associates
37 photos of Englishite associated with Montgomeryite | Ca4MgAl4(PO4)6(OH)4 · 12H2O |
25 photos of Englishite associated with Tiptopite | K2(Na,Ca)2Li3Be6(PO4)6(OH)2 · H2O |
23 photos of Englishite associated with Roscherite | Ca2Mn2+5Be4(PO4)6(OH)4 · 6H2O |
13 photos of Englishite associated with Variscite | AlPO4 · 2H2O |
10 photos of Englishite associated with Crandallite | CaAl3(PO4)(PO3OH)(OH)6 |
10 photos of Englishite associated with Wardite | NaAl3(PO4)2(OH)4 · 2H2O |
7 photos of Englishite associated with Robertsite | Ca2Mn3+3(PO4)3O2 · 3H2O |
7 photos of Englishite associated with Hurlbutite | CaBe2(PO4)2 |
6 photos of Englishite associated with Beryl | Be3Al2(Si6O18) |
6 photos of Englishite associated with Whiteite-(CaMnMg) | {Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O |
Related Minerals - Strunz-mindat Grouping
8.DH. | Thebaite-(NH4) | (NH4)3Al(C2O4)(PO3OH)2(H2O) |
8.DH. | Whiteite-(MnMnMn) | Mn2+Mn2+Mn2+2Al2(PO4)4(OH)2 · 8H2O |
8.DH. | Ferroberaunite | Fe2+Fe3+5(PO4)4(OH)5 · 6H2O |
8.DH. | Regerite | KFe6(PO4)4(OH)7(H2O)6 · 4H2O |
8.DH. | Ammoniotinsleyite | (NH4)Al2(PO4)2(OH) · 2H2O |
8.DH. | Dendoraite-(NH4) | (NH4)2NaAl(C2O4)(PO3OH)2(H2O)2 |
8.DH. | Rowleyite | [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6 · n[H2O,Na,NH4,K,Cl] |
8.DH. | Hochleitnerite | Mn2Ti3(PO4)4O2(H2O)2 · 14H2O |
8.DH. | Whiteite-(CaMnFe) | CaMnFe2Al2(PO4)4(OH)2 · 8H2O |
8.DH.05 | Minyulite | KAl2(PO4)2F · 4H2O |
8.DH.10 | Leucophosphite | KFe3+2(PO4)2(OH) · 2H2O |
8.DH.10 | Tinsleyite | KAl2(PO4)2(OH) · 2H2O |
8.DH.10 | Spheniscidite | (NH4,K)(Fe3+,Al)2(PO4)2(OH) · 2H2O |
8.DH.15 | Jahnsite-(CaMnFe) | {Ca}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(NaMnMn) | {Na}{Mn2+}{(Mn2+,Fe3+)2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(CaMnMg) | {Ca}{Mn2+}{(Mg,Fe2+)2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(CaMnMn) | {Ca}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(MnMnMg) | MnMnMg2Al2(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(CaMnZn) | {Ca}{Mn2+}{Zn2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(MnMnMg) | {Mn2+}{Mn2+}{Mg2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(MnMnFe) | {Mn2+}{Mn2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(CaFeFe) | {Ca}{Fe2+}{Fe2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Rittmannite | {(Mn2+,Ca)}{Mn2+}{(Fe2+,Mn2+,Mg)2}{(Al,Fe3+)2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Keckite | CaMn2+(Fe3+Mn2+)Fe3+2(PO4)4(OH)3 · 7H2O |
8.DH.15 | Jahnsite-(NaMnMg) | {(Na,Ca)}{(Mn2+,Fe3+)}{(Mg,Fe3+)2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(CaMgMg) | {Ca}{Mg}{Mg2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(MnMnZn) | {Mn2+}{Mn2+}{Zn2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(CaMgMg) | CaMg3Al2(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(CaFeMg) | {Ca}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(CaMnMg) | {Ca}{Mn2+}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(MnFeMg) | {(Mn2+,Ca)}{(Fe2+,Mn2+)}{Mg2}{Al2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(MnMnMn) | {Mn2+}{Mn2+}{Mn2+2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Kaluginite | (Mn2+,Ca)MgFe3+(PO4)2(OH) · 4H2O |
8.DH.15 | Jahnsite-(CaFeMg) | {Ca}{Fe2+}{Mg2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Whiteite-(CaMnMn) | {Ca}{Mn2+}{Mn2}{Al2}(PO4)4(OH)2 · 8H2O |
8.DH.15 | Jahnsite-(NaFeMg) | {Na}{Fe3+}{Mg2}{Fe3+2}(PO4)4(OH)2 · 8H2O |
8.DH.20 | Segelerite | Ca2 Mg2 Fe3+2(PO4)4(OH)2 · 8H2O |
8.DH.20 | Lun'okite | (Mn,Ca)(Mg,Fe,Mn)Al(PO4)2OH · 4H2O |
8.DH.20 | Manganosegelerite | (Mn2+,Ca)(Mn2+,Fe2+,Mg)Fe3+(PO4)2(OH) · 4H2O |
8.DH.20 | Wilhelmvierlingite | CaMnFe3+(PO4)2(OH) · 2H2O |
8.DH.20 | Juonniite | CaMgSc(PO4)2(OH) · 4H2O |
8.DH.20 | Overite | CaMgAl(PO4)2(OH) · 4H2O |
8.DH.25 | Calcioferrite | Ca2Fe3+2(PO4)3(OH) · 7H2O |
8.DH.25 | Zodacite | Ca4Mn2+Fe3+4(PO4)6(OH)4 · 12H2O |
8.DH.25 | Fanfaniite | Ca4MnAl4(PO4)6(OH)4 · 12H2O |
8.DH.25 | Kingsmountite | Ca3MnFeAl4(PO4)6(OH)4 · 12H2O |
8.DH.25 | Montgomeryite | Ca4MgAl4(PO4)6(OH)4 · 12H2O |
8.DH.30 | Pararobertsite | Ca2Mn3+3(PO4)3O2 · 3H2O |
8.DH.30 | Robertsite | Ca2Mn3+3(PO4)3O2 · 3H2O |
8.DH.30 | Arseniosiderite | Ca2Fe3+3(AsO4)3O2 · 3H2O |
8.DH.30 | Sailaufite | (Ca,Na,◻)2Mn3+3(AsO4)2(CO3)O2 · 3H2O |
8.DH.30 | Mitridatite | Ca2Fe3+3(PO4)3O2 · 3H2O |
8.DH.30 | Kolfanite | Ca2Fe3+3O2(AsO4)3 · 2H2O |
8.DH.35 | Mantienneite | KMg2Al2Ti(PO4)4(OH)3 · 15H2O |
8.DH.35 | Sperlingite | (H2O)K(Mn2+Fe3+)(Al2Ti)(PO4)4[O(OH)] [(H2O)9(OH)] · 4H2O |
8.DH.35 | Paulkerrite | K(Mg,Mn2+)2(Fe3+,Al,Ti,Mg)2Ti(PO4)4(OH)3 · 15H2O |
8.DH.35 | Hydroxylbenyacarite | (H2O)2Mn2(Ti2Fe)(PO4)4[O(OH)](H2O)10 · 4H2O |
8.DH.35 | Macraeite | K(H2O)Mn2(Fe2Ti)(PO4)4[O(OH)](H2O)10 · 4H2O |
8.DH.35 | Benyacarite | (H2O)2Mn2Ti2Fe3+(PO4)4(OF)(H2O)10 · 4H2O |
8.DH.35 | Fluormacraeite | [(H2O)K]Mn2(Fe2Ti)(PO4)4(OF)(H2O)10 · 4H2O |
8.DH.40 | Xanthoxenite | Ca4Fe3+2(PO4)4(OH)2 · 3H2O |
8.DH.45 | Mahnertite | NaCu3(AsO4)2Cl · 5H2O |
8.DH.50 | Andyrobertsite | KCdCu5(AsO4)4(H2AsO4) · 2H2O |
8.DH.50 | Calcioandyrobertsite | KCaCu5(AsO4)4(H2AsO4) · 2H2O |
8.DH.60 | Bouazzerite | Bi6(Mg,Co)11Fe3+14(AsO4)18(OH)4O12 · 86H2O |
8.DH.65 | Galliskiite | Ca4Al2(PO4)2F8 · 5H2O |
8.DH.70 | Joteite | Ca2CuAl(AsO4)[AsO3(OH)]2(OH)2 · 5H2O |
8.DH.75 | Kampelite | Ba6Mg3Sc8(PO4)12(OH)6 · 7H2O |
8.DH.80 | Kapundaite | NaCaFe4(PO4)4(OH)3 · 5H2O |
8.DH.85 | Vaniniite | Ca2Mn2+3Mn3+2O2(AsO4)4 · 2H2O |
Radioactivity
Element | % Content | Activity (Bq/kg) | Radiation Type |
---|---|---|---|
Uranium (U) | 0.0000% | 0 | α, β, γ |
Thorium (Th) | 0.0000% | 0 | α, β, γ |
Potassium (K) | 3.3035% | 1,024 | β, γ |
For comparison:
- Banana: ~15 Bq per fruit
- Granite: 1,000–3,000 Bq/kg
- EU exemption limit: 10,000 Bq/kg
Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.
Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!
Activity: –
Distance | Dose rate | Risk |
---|---|---|
1 cm | ||
10 cm | ||
1 m |
The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).
D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield
Other Information
Internet Links for Englishite
Please feel free to link to this page.
References for Englishite
Localities for Englishite
Locality List




All localities listed without proper references should be considered as questionable.
USA | |
| Jensen (1999) |
| Jensen et al. (1995) |
| Jensen et al. (1995) |
| Castor et al. (2004) |
| Dunn et al. (1984) +1 other reference |
| Palache et al. (1951) +1 other reference |
Thorne (n.d.) +1 other reference |
Tip Top Mine, Fourmile, Custer Mining District, Custer County, South Dakota, USA