Log InRegister
Quick Links : The Mindat ManualThe Rock H. Currier Digital LibraryMindat Newsletter [Free Download]
Home PageAbout MindatThe Mindat ManualHistory of MindatCopyright StatusWho We AreContact UsAdvertise on Mindat
Donate to MindatCorporate SponsorshipSponsor a PageSponsored PagesMindat AdvertisersAdvertise on Mindat
Learning CenterWhat is a mineral?The most common minerals on earthInformation for EducatorsMindat ArticlesThe ElementsThe Rock H. Currier Digital LibraryGeologic Time
Minerals by PropertiesMinerals by ChemistryAdvanced Locality SearchRandom MineralRandom LocalitySearch by minIDLocalities Near MeSearch ArticlesSearch GlossaryMore Search Options
Search For:
Mineral Name:
Locality Name:
Keyword(s):
 
The Mindat ManualAdd a New PhotoRate PhotosLocality Edit ReportCoordinate Completion ReportAdd Glossary Item
Mining CompaniesStatisticsUsersMineral MuseumsClubs & OrganizationsMineral Shows & EventsThe Mindat DirectoryDevice SettingsThe Mineral Quiz
Photo SearchPhoto GalleriesSearch by ColorNew Photos TodayNew Photos YesterdayMembers' Photo GalleriesPast Photo of the Day GalleryPhotography

Goldichite

A valid IMA mineral species - grandfathered
This page is currently not sponsored. Click here to sponsor this page.
Hide all sections | Show all sections

About GoldichiteHide

05688850017271923574794.jpg
Samuel Stephen Goldich
Formula:
KFe(SO4)2 · 4H2O
Colour:
Pale yellowish green
Lustre:
Vitreous
Hardness:
Specific Gravity:
2.43
Crystal System:
Monoclinic
Name:
Named in 1955 by Abraham Rosenzweig and Eugene B. Gross in honor of Dr. Samuel Stephen Goldich ["January", 1909 USA - December 20, 2000 Applewood, Colorado, USA], American mineralogist, University of Minnesota and founding chief of the USGS Branch of Isotope Geology. The Goldich Stability Series was devised by him.
This page provides mineralogical data about Goldichite.


Unique IdentifiersHide

Mindat ID:
1722
Long-form identifier:
mindat:1:1:1722:6

IMA Classification of GoldichiteHide

Approved, 'Grandfathered' (first described prior to 1959)
IMA Formula:
KFe3+(SO4)2 · 4H2O
First published:
1955

Classification of GoldichiteHide

7.CC.40

7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
C : With medium-sized and large cations
29.5.2.1

29 : HYDRATED ACID AND NORMAL SULFATES
5 : AB(XO4)2·xH2O
25.11.8

25 : Sulphates
11 : Sulphates of Fe and other metals

Mineral SymbolsHide

As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.

SymbolSourceReference
GolIMA–CNMNCWarr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43

Physical Properties of GoldichiteHide

Vitreous
Transparency:
Transparent
Colour:
Pale yellowish green
Comment:
Lavender tint in artificial light.
Streak:
White
Hardness:
2½ on Mohs scale
Tenacity:
Brittle
Cleavage:
Perfect
On {100}
Density:
2.43 g/cm3 (Measured)    2.461 g/cm3 (Calculated)

Optical Data of GoldichiteHide

Type:
Biaxial (+)
RI values:
nα = 1.582 - 1.584 nβ = 1.602(2) nγ = 1.629 - 1.639
2V:
Measured: 82° , Calculated: 75° to 82°
Max. Birefringence:
δ = 0.047 - 0.055
Based on recorded range of RI values above.

Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.

Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.

Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.

Surface Relief:
Moderate
Dispersion:
r > v strong
Optical Extinction:
X = b; Y ≃ a; Z ∧ c = 9°–11°.
Pleochroism:
Weak
Comments:
X= colorless
Y= colorless to pale yellow
Z= very pale yellow

Chemistry of GoldichiteHide

Mindat Formula:
KFe(SO4)2 · 4H2O
Element Weights:
Element% weight
O53.461 %
S17.857 %
Fe15.550 %
K10.887 %
H2.245 %

Calculated from ideal end-member formula.

Crystallography of GoldichiteHide

Crystal System:
Monoclinic
Class (H-M):
2/m - Prismatic
Space Group:
P21/b
Cell Parameters:
a = 10.387(6) Å, b = 10.486(6) Å, c = 9.086(5) Å
β = 101.68(7)°
Ratio:
a:b:c = 0.991 : 1 : 0.866
Unit Cell V:
969.14 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Flattened on {100} and elongated along [001] with forms {100}, {110}, and
{011}.

Crystallographic forms of GoldichiteHide

Crystal Atlas:
Image Loading
Click on an icon to view
Goldichite - {100}, {110}, {011},
3d models and HTML5 code kindly provided by www.smorf.nl.

Toggle
Edge Lines | Miller Indices | Axes

Transparency
Opaque | Translucent | Transparent

View
Along a-axis | Along b-axis | Along c-axis | Start rotation | Stop rotation

Crystal StructureHide

Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File    Best | x | y | z | a | b | c
Rotation
Stop | Start
Labels
Console Off | On | Grey | Yellow
IDSpeciesReferenceLinkYearLocalityPressure (GPa)Temp (K)
0000264GoldichiteGraeber E J, Rosenzweig A (1971) The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2.4H2O American Mineralogist 56 1917-193319710293
CIF Raw Data - click here to close

X-Ray Powder DiffractionHide

Powder Diffraction Data:
d-spacingIntensity
3.068 Å(100)
7.35 Å(90)
10.29 Å(80)
6.85 Å(70)
4.00 Å(60)
3.403 Å(60)
2.656 Å(60)

Geological EnvironmentHide

Paragenetic Mode(s):
Geological Setting:
Oxidation of pyrite, rarely fumaroles.

Type Occurrence of GoldichiteHide

General Appearance of Type Material:
Radiating clusters of pale-green crystals or fine-grained crystalline encrustations.
Place of Conservation of Type Material:
National Museum of Natural History (Smithsonian), Washington, D.C., USA, 106903.
Geological Setting of Type Material:
Cementing material of a talus slope below a small, pyrite-rich uranium deposit.
Associated Minerals at Type Locality:

Other Language Names for GoldichiteHide

Common AssociatesHide

Associated Minerals Based on Photo Data:
29 photos of Goldichite associated with CoquimbiteAlFe3(SO4)6(H2O)12 · 6H2O
16 photos of Goldichite associated with RömeriteFe2+Fe3+2(SO4)4 · 14H2O
10 photos of Goldichite associated with HalotrichiteFeAl2(SO4)4 · 22H2O
9 photos of Goldichite associated with VoltaiteK2Fe2+5Fe3+3Al(SO4)12 · 18H2O
4 photos of Goldichite associated with FerricopiapiteFe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O
3 photos of Goldichite associated with KrausiteKFe(SO4)2 · H2O
2 photos of Goldichite associated with CopiapiteFe2+Fe3+4(SO4)6(OH)2 · 20H2O
1 photo of Goldichite associated with MelanteriteFe2+(H2O)6SO4 · H2O
1 photo of Goldichite associated with PickeringiteMgAl2(SO4)4 · 22H2O

Related Minerals - Strunz-mindat GroupingHide

7.CC.CobaltoblöditeNa2Co(SO4)2 · 4H2OMon. 2/m : P21/b
7.CC.AndychristyitePbCu2+Te6+O5(H2O)Tric. 1 : P1
7.CC.Ammoniovoltaite(NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18Iso. m3m (4/m 3 2/m) : Fd3c
7.CC.05KrausiteKFe(SO4)2 · H2OMon. 2/m : P21/m
7.CC.10TamarugiteNaAl(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.15MendoziteNaAl(SO4)2 · 11H2OMon. 2/m : B2/b
7.CC.15KaliniteKAl(SO4)2 · 11H2OMon. 2/m : B2/b
7.CC.20Alum-(Na)NaAl(SO4)2 · 12H2OIso. m3 (2/m 3) : Pa3
7.CC.20Lonecreekite(NH4)Fe3+(SO4)2 · 12H2OIso. m3 (2/m 3) : Pa3
7.CC.20Alum-(K)KAl(SO4)2 · 12H2OIso. m3 (2/m 3) : Pa3
7.CC.20Tschermigite(NH4)Al(SO4)2 · 12H2OIso. m3 (2/m 3) : Pa3
7.CC.20LanmuchangiteTl+Al(SO4)2 · 12H2OIso. m3 (2/m 3) : Pa3
7.CC.25ZincovoltaiteK2Zn5Fe3+3Al(SO4)12 · 18H2OIso. m3m (4/m 3 2/m) : Fd3c
7.CC.25VoltaiteK2Fe2+5Fe3+3Al(SO4)12 · 18H2OIso. m3m (4/m 3 2/m) : Fd3c
7.CC.25MagnesiovoltaiteK2Mg5Fe3+3Al(SO4)12 · 18H2OIso. m3m (4/m 3 2/m) : Fd3c
7.CC.25PertlikiteK2(Fe2+,Mg)2(Mg,Fe3+)4Fe3+2Al(SO4)12 · 18H2OTet. 4/mmm (4/m 2/m 2/m) : I41/acd
7.CC.25Ammoniomagnesiovoltaite(NH4)2Mg2+5Fe3+3Al(SO4)12 · 18H2OIso. m3m (4/m 3 2/m) : Fd3c
7.CC.30KröhnkiteNa2Cu(SO4)2 · 2H2OMon. 2/m : P21/b
7.CC.35FerrinatriteNa3Fe(SO4)3 · 3H2OTrig. 3 : P3
7.CC.45LöweiteNa12Mg7(SO4)13 · 15H2OTrig. 3 : R3
7.CC.50NickelblöditeNa2Ni(SO4)2 · 4H2OMon. 2/m : P21/b
7.CC.50BlöditeNa2Mg(SO4)2 · 4H2OMon. 2/m : P21/b
7.CC.50ChangoiteNa2Zn(SO4)2 · 4H2OMon. 2/m : P21/b
7.CC.55LeoniteK2Mg(SO4)2 · 4H2OMon. 2/m : B2/m
7.CC.55MereiteriteK2Fe(SO4)2 · 4H2OMon. 2/m : B2/m
7.CC.60NickelpicromeriteK2Ni(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.60Nickelboussingaultite(NH4)2Ni(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.60Katerinopoulosite(NH4)2Zn(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.60PicromeriteK2Mg(SO4)2 · 6H2OMon. 2/m : P2/b
7.CC.60CyanochroiteK2Cu(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.60Mohrite(NH4)2Fe(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.60Boussingaultite(NH4)2Mg(SO4)2 · 6H2OMon. 2/m : P21/b
7.CC.65PolyhaliteK2Ca2Mg(SO4)4 · 2H2OTric. 1
7.CC.70LeightoniteK2Ca2Cu(SO4)4 · 2H2OMon. 2/m : B2/b
7.CC.75AmarilliteNaFe(SO4)2 · 6H2OMon. 2/m : B2/b
7.CC.80KonyaiteNa2Mg(SO4)2 · 5H2OMon. 2/m : P21/b
7.CC.85WattevilleiteNa2Ca(SO4)2 · 4H2O (?)Orth.
7.CC.85XocolatliteCa2Mn4+2(Te6+O6)2 · H2OMon. 2/m : P2/m
7.CC.90Eckhardite(Ca,Pb)Cu2+Te6+O5(H2O)Mon. 2/m

RadioactivityHide

Radioactivity:
Element % Content Activity (Bq/kg) Radiation Type
Uranium (U) 0.0000% 0 α, β, γ
Thorium (Th) 0.0000% 0 α, β, γ
Potassium (K) 10.8870% 3,375 β, γ

For comparison:

  • Banana: ~15 Bq per fruit
  • Granite: 1,000–3,000 Bq/kg
  • EU exemption limit: 10,000 Bq/kg

Note: Risk is shown relative to daily recommended maximum exposure to non-background radiation of 1000 µSv/year. Note that natural background radiation averages around 2400 µSv/year so in reality these risks are probably extremely overstated! With infrequent handling and safe storage natural radioactive minerals do not usually pose much risk.

Interactive Simulator:

Note: The mass selector refers to the mass of radioactive mineral present, not the full specimen, also be aware that the matrix may also be radioactive, possibly more radioactive than this mineral!

Activity:

DistanceDose rateRisk
1 cm
10 cm
1 m

The external dose rate (D) from a radioactive mineral is estimated by summing the gamma radiation contributions from its Uranium, Thorium, and Potassium content, disregarding daughter-product which may have a significant effect in some cases (eg 'pitchblende'). This involves multiplying the activity (A, in Bq) of each element by its specific gamma ray constant (Γ), which accounts for its unique gamma emissions. The total unshielded dose at 1 cm is then scaled by the square of the distance (r, in cm) and multiplied by a shielding factor (μshield). This calculation provides a 'worst-case' or 'maximum risk' estimate because it assumes the sample is a point source and entirely neglects any self-shielding where radiation is absorbed within the mineral itself, meaning actual doses will typically be lower. The resulting dose rate (D) is expressed in microsieverts per hour (μSv/h).

D = ((AU × ΓU) + (ATh × ΓTh) + (AK × ΓK)) / r2 × μshield

Other InformationHide

Notes:
Slightly soluble in cold water. Soluble in hot water with hydrolysis.
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.

Internet Links for GoldichiteHide

References for GoldichiteHide

Localities for GoldichiteHide

This map shows a selection of localities that have latitude and longitude coordinates recorded. Click on the symbol to view information about a locality. The symbol next to localities in the list can be used to jump to that position on the map.

Locality ListHide

- This locality has map coordinates listed. - This locality has estimated coordinates. ⓘ - Click for references and further information on this occurrence. ? - Indicates mineral may be doubtful at this locality. - Good crystals or important locality for species. - World class for species or very significant. (TL) - Type Locality for a valid mineral species. (FRL) - First Recorded Locality for everything else (eg varieties). Struck out - Mineral was erroneously reported from this locality. Faded * - Never found at this locality but inferred to have existed at some point in the past (e.g. from pseudomorphs).

All localities listed without proper references should be considered as questionable.
Argentina
 
  • Jujuy Province
    • Santa Bárbara Department
      • Cerros de Santa Bárbara
        • El Palmar hot springs
rruff.geo.arizona.edu (n.d.) +1 other reference
Canada
 
  • Ontario
    • Greater Sudbury
      • McKim Township
Schindler et al. (2012)
Caribbean Netherlands
 
Anthony et al. (2016)
Chile
 
  • Antofagasta
    • Antofagasta Province
      • Sierra Gorda
Samples analysed by Tony Kampf of LAC ...
  • Tarapacá
    • Tamarugal Province
Peter G. Seroka collection
China
 
  • Anhui
Cai et al. (2009)
Greece
 
  • Attica
    • East Attica
      • Lavreotiki
        • Elaiochori
          • Dipseliza mines
Rieck (n.d.)
        • Plaka
          • Plaka Mines
Kolitsch et al. (2014)
Rieck (n.d.)
        • Sounion
          • Cato Sounio mines
Rieck (n.d.)
Italy
 
  • Campania
    • Metropolitan City of Naples
      • Pozzuoli
De Michele (1974)
  • Tuscany
    • Lucca Province
      • Stazzema
        • Sant'Anna di Stazzema
Biagioni et al. (2019) +1 other reference
Peru
 
  • Ayacucho
    • Lucanas Province
      • Huac-huas District
Roth et al. (2012)
Portugal
 
  • Azores
    • São Miguel
      • Povoação
        • Furnas
Flahaut et al. (2018, September)
Russia
 
  • Sakhalin Oblast
    • Kuril Islands (Kurile Islands)
      • Kurilsky District
        • Iturup Island
maurice.strahlen.org (2004)
USA
 
  • Utah
    • Emery County
      • Calf Mesa Mining District
Bullock (1981)
Rosenzweig et al. (1955) +1 other reference
 
and/or  
Mindat.org is an outreach project of the Hudson Institute of Mineralogy, a 501(c)(3) not-for-profit organization.
Copyright © mindat.org and the Hudson Institute of Mineralogy 1993-2025, except where stated. Most political location boundaries are © OpenStreetMap contributors. Mindat.org relies on the contributions of thousands of members and supporters. Founded in 2000 by Jolyon Ralph.
To cite: Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S. M., Li, W., Chen, W., & Ma, X. (2025). Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110(6), 833–844. doi:10.2138/am-2024-9486.
Privacy Policy - Terms & Conditions - Contact Us / DMCA issues - Report a bug/vulnerability Current server date and time: August 13, 2025 10:22:42 Page updated: August 11, 2025 19:44:17
Go to top of page