Coquimbite
A valid IMA mineral species - grandfathered
This page is currently not sponsored. Click here to sponsor this page.
About Coquimbite
Formula:
AlFe3(SO4)6(H2O)12 · 6H2O
Formerly given as Fe2-xAlx(SO4)3.9H2O (x ~0.5) or even Fe2(SO4)3.9H2O; redefined by IMA in 2019 (Al is essential)
Colour:
Light violet to purple, Greenish white, Bluish white, Yellowish white, Brownish white
Lustre:
Sub-Vitreous, Resinous, Waxy, Greasy
Hardness:
2½
Specific Gravity:
2.11
Crystal System:
Trigonal
Member of:
Name:
Named in 1841 by August Breithaupt for the type locality in the province of Coquimbo, Chile
Type Locality:
Visually indistinguishable from aluminocoquimbite.
Coquimbite and paracoquimbite are structurally homeotypic.
Most (or all, if the species is truly coquimbite) samples carry Al, with variable Al:Fe ratio. It is now (2019) proved that Al is essential. Three metal sites, all with octahedral coordination, are non-equivalent. M(1) site, usually fully occupied by Al, is coordinated by water, M(2) - exclusively by the sulfate groups, while M(3) is surrounded by three oxygens of the sulfate groups and three belonging to water moleculess. M(2) and M(3) sites are dominated by Fe. There are M(2)M(3)2(SO4)6(H2O)6 clusters. Sulfate groups participating in the formation of these clusters are corner-sharing. Additional 6 water groups are held only be hydrogen bonding. Interaction of Fe3(SO4)6(H2O)6 clusters via hydrogen bonds gives rise to discontinuous zig-zag chains along [001]. Further hydrogen bond interaction of these chains with isolated Al(H2O)6 octahedra produces cages containing interstitial water. An interesting structural features is a cyclohexane-like chair conformation of these water molecules, also observed in aluminocoquimbite.
Compare the visually similar 'UM1988-20-SO:FeH'.
Coquimbite and paracoquimbite are structurally homeotypic.
Most (or all, if the species is truly coquimbite) samples carry Al, with variable Al:Fe ratio. It is now (2019) proved that Al is essential. Three metal sites, all with octahedral coordination, are non-equivalent. M(1) site, usually fully occupied by Al, is coordinated by water, M(2) - exclusively by the sulfate groups, while M(3) is surrounded by three oxygens of the sulfate groups and three belonging to water moleculess. M(2) and M(3) sites are dominated by Fe. There are M(2)M(3)2(SO4)6(H2O)6 clusters. Sulfate groups participating in the formation of these clusters are corner-sharing. Additional 6 water groups are held only be hydrogen bonding. Interaction of Fe3(SO4)6(H2O)6 clusters via hydrogen bonds gives rise to discontinuous zig-zag chains along [001]. Further hydrogen bond interaction of these chains with isolated Al(H2O)6 octahedra produces cages containing interstitial water. An interesting structural features is a cyclohexane-like chair conformation of these water molecules, also observed in aluminocoquimbite.
Compare the visually similar 'UM1988-20-SO:FeH'.
Unique Identifiers
Mindat ID:
1126
Long-form identifier:
mindat:1:1:1126:2
IMA Classification of Coquimbite
Approved, 'Grandfathered' (first described prior to 1959)
Approval history:
redefinition code: IMA 19-F
Classification of Coquimbite
7.CB.55
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
7 : SULFATES (selenates, tellurates, chromates, molybdates, wolframates)
C : Sulfates (selenates, etc.) without additional anions, with H2O
B : With only medium-sized cations
Dana 7th ed.:
29.8.3.1
29.8.3.1
29 : HYDRATED ACID AND NORMAL SULFATES
8 : A2(XO4)3·H2O
29 : HYDRATED ACID AND NORMAL SULFATES
8 : A2(XO4)3·H2O
25.10.9
25 : Sulphates
10 : Sulphates of Fe alone
25 : Sulphates
10 : Sulphates of Fe alone
Mineral Symbols
As of 2021 there are now IMA–CNMNC approved mineral symbols (abbreviations) for each mineral species, useful for tables and diagrams.
Symbol | Source | Reference |
---|---|---|
Coq | IMA–CNMNC | Warr, L.N. (2021). IMA–CNMNC approved mineral symbols. Mineralogical Magazine, 85(3), 291-320. doi:10.1180/mgm.2021.43 |
Physical Properties of Coquimbite
Sub-Vitreous, Resinous, Waxy, Greasy
Transparency:
Transparent
Colour:
Light violet to purple, Greenish white, Bluish white, Yellowish white, Brownish white
Streak:
White
Hardness:
2½ on Mohs scale
Tenacity:
Brittle
Cleavage:
Imperfect/Fair
fair/imperfect on [1011]
very poor/difficult on {1010}
fair/imperfect on [1011]
very poor/difficult on {1010}
Fracture:
Sub-Conchoidal
Density:
2.11(1) g/cm3 (Measured) 2.12 g/cm3 (Calculated)
Comment:
Dana, 7th ed. gives calculated density as 2.137.
Optical Data of Coquimbite
Type:
Uniaxial (+)
RI values:
nω = 1.539 nε = 1.548
Birefringence:
0.009
Max. Birefringence:
δ = 0.000
Based on recorded range of RI values above.
Based on recorded range of RI values above.
Interference Colours:
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
The colours simulate birefringence patterns seen in thin section under crossed polars. They do not take into account mineral colouration or opacity.
Michel-Levy Bar The default colours simulate the birefringence range for a 30 µm thin-section thickness. Adjust the slider to simulate a different thickness.
Grain Simulation You can rotate the grain simulation to show how this range might look as you rotated a sample under crossed polars.
Surface Relief:
Moderate
Optical Extinction:
Parallel
Pleochroism:
Non-pleochroic
Chemistry of Coquimbite
Mindat Formula:
AlFe3(SO4)6(H2O)12 · 6H2O
Formerly given as Fe2-xAlx(SO4)3.9H2O (x ~0.5) or even Fe2(SO4)3.9H2O; redefined by IMA in 2019 (Al is essential)
Formerly given as Fe2-xAlx(SO4)3.9H2O (x ~0.5) or even Fe2(SO4)3.9H2O; redefined by IMA in 2019 (Al is essential)
Element Weights:
Common Impurities:
Al
Crystallography of Coquimbite
Crystal System:
Trigonal
Class (H-M):
3m (3 2/m) - Hexagonal Scalenohedral
Space Group:
P3 1c
Cell Parameters:
a = 10.922(9) Å, c = 17.084(14) Å
Ratio:
a:c = 1 : 1.564
Unit Cell V:
1,764.92 ų (Calculated from Unit Cell)
Z:
4
Morphology:
Short prismatic [0001] with {1010} and {1120} to pyramidal crystals {1011}. Massive, granular.
Crystal Structure
Load
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Unit Cell | Unit Cell Packed
2x2x2 | 3x3x3 | 4x4x4
Show
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Big Balls | Small Balls | Just Balls | Spacefill
Polyhedra Off | Si Polyhedra | All Polyhedra
Remove metal-metal sticks
Display Options
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
Black Background | White Background
Perspective On | Perspective Off
2D | Stereo | Red-Blue | Red-Cyan
View
CIF File Best | x | y | z | a | b | c
CIF File Best | x | y | z | a | b | c
Rotation
Stop | Start
Stop | Start
Labels
Console Off | On | Grey | Yellow
Console Off | On | Grey | Yellow
Data courtesy of the American Mineralogist Crystal Structure Database. Click on an AMCSD ID to view structure
ID | Species | Reference | Link | Year | Locality | Pressure (GPa) | Temp (K) |
---|---|---|---|---|---|---|---|
0000211 | Coquimbite | Fang J H, Robinson P D (1970) Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite American Mineralogist 55 1534-1540 | ![]() | 1970 | 0 | 293 | |
0006334 | Coquimbite | Demartin F, Castellano C, Gramaccioli C M, Campostrini I (2010) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals The Canadian Mineralogist 48 323-333 | 2010 | La Alcaparrosa, Chile | 0 | 293 | |
0006335 | Coquimbite | Demartin F, Castellano C, Gramaccioli C M, Campostrini I (2010) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals The Canadian Mineralogist 48 323-333 | 2010 | the Dexter No. 7 mine, Calf Mesa, San Rafael Swell, Utah, USA | 0 | 293 | |
0006336 | Coquimbite | Demartin F, Castellano C, Gramaccioli C M, Campostrini I (2010) Aluminum-for-iron substitution, hydrogen bonding, and a novel structure-type in coquimbite-like minerals The Canadian Mineralogist 48 323-333 | 2010 | Alum Grotto, Vulcano, Aeolian Islands, Sicily, Italy | 0 | 293 | |
0007144 | Coquimbite | Majzlan J, Navrotsky A, McCleskey R B, Alpers C N (2006) Thermodynamic properties and crystal structure refinement of ferricopiapite, coquimbite, rhomboclase, and Fe2(SO4)3(H2O)5 European Journal of Mineralogy 18 175-186 | 2006 | synthetic | 0 | 293 |
CIF Raw Data - click here to close
Epitaxial Relationships of Coquimbite
Epitaxial Minerals:
Paracoquimbite | Fe4(SO4)6(H2O)12 · 6H2O |
Epitaxy Comments:
Paracoquimbite in parallel position. Lamellar intergrowths on {0001}, or as scepter-like overgrowths.
X-Ray Powder Diffraction
Powder Diffraction Data:
d-spacing | Intensity |
---|---|
8.28 Å | (80) |
5.47 Å | (60) |
4.60 Å | (60) |
3.64 Å | (60) |
3.50 Å | (50) |
3.36 Å | (100) |
2.77 Å | (50) |
2.76 Å | (80) |
Comments:
ICDD 44-1425
Geological Environment
Paragenetic Mode(s):
Paragenetic Mode | Earliest Age (Ga) |
---|---|
Stage 7: Great Oxidation Event | <2.4 |
45a : [Sulfates, arsenates, selenates, antimonates] | |
47a : [Near-surface hydration of prior minerals] | |
47b : [Sulfates and sulfites] | |
Stage 10a: Neoproterozoic oxygenation/terrestrial biosphere | <0.6 |
50 : Coal and/or oil shale minerals | <0.36 |
Stage 10b: Anthropogenic minerals | <10 Ka |
54 : Coal and other mine fire minerals (see also #51 and #56) | |
55 : Anthropogenic mine minerals |
Geological Setting:
Secondary weathering zone of iron sulfide deposits in arid regions. Rarely in fumaroles.
Type Occurrence of Coquimbite
Place of Conservation of Type Material:
Mining Academy, Freiberg, Germany 18558; neotype: U.S. National Museum, Washington DC, USA, catalogue number 12548 (Tierra Amarilla material; Rose, 1833; Fang and Robinson, 1970)
Synonyms of Coquimbite
White Copperas (in part)
Other Language Names for Coquimbite
Varieties of Coquimbite
Aluminous Coquimbite | An aluminous variety of coquimbite formed as a by-product of a burning pyritic orebody. |
Relationship of Coquimbite to other Species
Member of:
Other Members of Coquimbite Group:
Aluminocoquimbite | Al2Fe2(SO4)6(H2O)12 · 6H2O | Trig. 3m (3 2/m) : P3 1c |
Paracoquimbite | Fe4(SO4)6(H2O)12 · 6H2O | Trig. 3 : R3 |
Common Associates
Associated Minerals Based on Photo Data:
78 photos of Coquimbite associated with Römerite | Fe2+Fe3+2(SO4)4 · 14H2O |
58 photos of Coquimbite associated with Halotrichite | FeAl2(SO4)4 · 22H2O |
47 photos of Coquimbite associated with Copiapite | Fe2+Fe3+4(SO4)6(OH)2 · 20H2O |
46 photos of Coquimbite associated with Alunogen | Al2(SO4)3 · 17H2O |
43 photos of Coquimbite associated with Voltaite | K2Fe2+5Fe3+3Al(SO4)12 · 18H2O |
40 photos of Coquimbite associated with Chalcanthite | CuSO4 · 5H2O |
29 photos of Coquimbite associated with Goldichite | KFe(SO4)2 · 4H2O |
25 photos of Coquimbite associated with Krausite | KFe(SO4)2 · H2O |
7 photos of Coquimbite associated with Szomolnokite | FeSO4 · H2O |
6 photos of Coquimbite associated with Ferricopiapite | Fe3+0.67Fe3+4(SO4)6(OH)2 · 20H2O |
Related Minerals - Strunz-mindat Grouping
7.CB. | Sarvodaite | Al2(SO4)3 · 5H2O |
7.CB.02 | Voudourisite | CdSO4 · H2O |
7.CB.05 | Szmikite | MnSO4 · H2O |
7.CB.05 | Szomolnokite | FeSO4 · H2O |
7.CB.05 | Cobaltkieserite | CoSO4 · H2O |
7.CB.05 | Dwornikite | Ni(SO4) · H2O |
7.CB.05 | Kieserite | MgSO4 · H2O |
7.CB.05 | Poitevinite | (Cu,Fe)SO4 · H2O |
7.CB.05 | Gunningite | ZnSO4 · H2O |
7.CB.07 | Sanderite | MgSO4 · 2H2O |
7.CB.10 | Bonattite | CuSO4 · 3H2O |
7.CB.12 | Belogubite | CuZn(SO4)2 · 10H2O |
7.CB.15 | Drobecite | CdSO4 · 4H2O |
7.CB.15 | Aplowite | (Co,Mn,Ni)SO4 · 4H2O |
7.CB.15 | Cranswickite | MgSO4 · 4H2O |
7.CB.15 | Rozenite | FeSO4 · 4H2O |
7.CB.15 | Starkeyite | MgSO4 · 4H2O |
7.CB.15 | Ilesite | Mn2+(SO4) · 4H2O |
7.CB.15 | Boyleite | ZnSO4 · 4H2O |
7.CB.20 | Siderotil | FeSO4 · 5H2O |
7.CB.20 | Jôkokuite | MnSO4 · 5H2O |
7.CB.20 | Pentahydrite | MgSO4 · 5H2O |
7.CB.20 | Chalcanthite | CuSO4 · 5H2O |
7.CB.25 | Chvaleticeite | Mn(SO4) · 6H2O |
7.CB.25 | Nickelhexahydrite | Ni(SO4) · 6H2O |
7.CB.25 | Hexahydrite | MgSO4 · 6H2O |
7.CB.25 | Bianchite | Zn(SO4) · 6H2O |
7.CB.25 | Moorhouseite | Co(SO4) · 6H2O |
7.CB.25 | Ferrohexahydrite | FeSO4 · 6H2O |
7.CB.30 | Retgersite | NiSO4 · 6H2O |
7.CB.35 | Zincmelanterite | (Zn,Cu,Fe)SO4 · 7H2O |
7.CB.35 | Melanterite | Fe2+(H2O)6SO4 · H2O |
7.CB.35 | Alpersite | (Mg,Cu)(SO4) · 7H2O |
7.CB.35 | Bieberite | CoSO4 · 7H2O |
7.CB.35 | Boothite | CuSO4 · 7H2O |
7.CB.35 | Mallardite | MnSO4 · 7H2O |
7.CB.40 | Epsomite | MgSO4 · 7H2O |
7.CB.40 | Goslarite | ZnSO4 · 7H2O |
7.CB.40 | Morenosite | NiSO4 · 7H2O |
7.CB.45 | Meta-alunogen | Al2(SO4)3 · 12H2O |
7.CB.45 | Alunogen | Al2(SO4)3 · 17H2O |
7.CB.50 | Aluminocoquimbite | Al2Fe2(SO4)6(H2O)12 · 6H2O |
7.CB.50 | Lazaridisite | 3CdSO4 · 8H2O |
7.CB.52 | Pararaisaite | CuMg[Te6+O4(OH)2] · 6H2O |
7.CB.55 | Paracoquimbite | Fe4(SO4)6(H2O)12 · 6H2O |
7.CB.55 | Rhomboclase | (H5O2)Fe3+(SO4)2 · 2H2O |
7.CB.55 | Raisaite | CuMg[Te6+O4(OH)2] · 6H2O |
7.CB.57 | Caichengyunite | Fe2+3Al2(SO4)6 · 30H2O |
7.CB.60 | Kornelite | Fe2(SO4)3 · 7H2O |
7.CB.65 | Quenstedtite | Fe2(SO4)3 · 11H2O |
7.CB.70 | Lausenite | Fe2(SO4)3 · 5H2O |
7.CB.75 | Römerite | Fe2+Fe3+2(SO4)4 · 14H2O |
7.CB.75 | Lishizhenite | ZnFe2(SO4)4 · 14H2O |
7.CB.80 | Ransomite | CuFe2(SO4)4 · 6H2O |
7.CB.85 | Dietrichite | (Zn,Fe2+,Mn2+)Al2(SO4)4 · 22H2O |
7.CB.85 | Halotrichite | FeAl2(SO4)4 · 22H2O |
7.CB.85 | Apjohnite | Mn2+Al2(SO4)4 · 22H2O |
7.CB.85 | Redingtonite | (Fe2+,Mg,Ni)(Cr,Al)2(SO4)4 · 22H2O |
7.CB.85 | Pickeringite | MgAl2(SO4)4 · 22H2O |
7.CB.85 | Bílinite | Fe2+Fe3+2(SO4)4 · 22H2O |
7.CB.85 | Wupatkiite | (Co,Mg,Ni)Al2(SO4)4 · 22H2O |
7.CB.90 | Meridianiite | MgSO4 · 11H2O |
Fluorescence of Coquimbite
Not fluorescent in UV
Other Information
Notes:
Soluble in cold water and cold mineral acids; astringent taste, efforesces in dry air as a white powder; heating a water solution causes decomposition of the solution with precipitation of hydrated ferric oxide
Health Risks:
No information on health risks for this material has been entered into the database. You should always treat mineral specimens with care.
Internet Links for Coquimbite
mindat.org URL:
https://www.mindat.org/min-1126.html
Please feel free to link to this page.
Please feel free to link to this page.
Search Engines:
External Links:
Mineral Dealers:
References for Coquimbite
Reference List:
Robinson, Paul D., H.Fang, J. (1971) Crystal structures and mineral chemistry of hydrated ferric sulphates: II. The crystal structure of paracoquimbite. American Mineralogist, 56 (9-10) 1567-1572
Demartin, F., Castellano, C., Gramaccioli, C. M., Campostrini, I. (2010) ALUMINUM-FOR-IRON SUBSTITUTION, HYDROGEN BONDING, AND A NOVEL STRUCTURE-TYPE IN COQUIMBITE-LIKE MINERALS. The Canadian Mineralogist, 48 (2) 323-333 doi:10.3749/canmin.48.2.323
Majzlan, Juraj, Ðorđević, Tamara, Kolitsch, Uwe, Schefer, Jürg (2010) Hydrogen bonding in coquimbite, nominally Fe2(SO4)3·9H2O, and the relationship between coquimbite and paracoquimbite. Mineralogy and Petrology, 100 (3) 241-248 doi:10.1007/s00710-010-0128-4
Frost, Ray L., Gobac, Željka Žigovečki, López, Andrés, Xi, Yunfei, Scholz, Ricardo, Lana, Cristiano, Lima, Rosa Malena Fernandes (2014) Characterization of the sulphate mineral coquimbite, a secondary iron sulphate from Javier Ortega mine, Lucanas Province, Peru – Using infrared, Raman spectroscopy and thermogravimetry. Journal of Molecular Structure, 1063. 251-258 doi:10.1016/j.molstruc.2014.01.086
Anthony, John W., Bideaux, Richard A., Bladh, Kenneth W., Nichols, Monte C. - Eds. (2016) Handbook of Mineralogy. https://www.handbookofmineralogy.org/
Yang, Zhuming, Giester, Gerald (2018) Structure refinements of coquimbite and paracoquimbite from the Hongshan Cu–Au deposit, NW China. European Journal of Mineralogy, 30 (4) 849-858 doi:10.1127/ejm/2018/0030-2752
Localities for Coquimbite
Locality List




All localities listed without proper references should be considered as questionable.
Argentina | |
| Demartin et al. (2010) |
| Perelló et al. (2023) |
Australia | |
| Sielecki (1988) |
Sielecki (1988) | |
| Noble R.J et al. (1983) |
| R Bottrill |
| Simpson (1948) |
Austria | |
| Kolitsch et al. (2022) |
| Taucher (1992) +1 other reference |
| Hollerer (1999) |
Belgium | |
| Van Tassel (1973) +5 other references |
| Histoire |
Bolivia | |
| Petrov (n.d.) |
Brazil | |
| ATENCIO +2 other references |
Gomes et al. (2023) | |
| Atencio et al. (2011) |
Bulgaria | |
| Dimitrova +3 other references |
Canada | |
| Peatfield (n.d.) +1 other reference |
| Zodrow (1989) |
Chile | |
| Collected by myself |
Some of the Sulphates has been ... | |
| Kampf +6 other references |
Palache et al. (1951) | |
Malcherek et al. (2010) | |
| Werthessen (2016) |
Singer et al. (2008) | |
| Bandy (1938) +1 other reference |
| Uwe Kolitsch (SXRD) +1 other reference |
| Palache et al. (1951) |
| Chouinard et al. (2005) +1 other reference |
AM 55 (1970) | |
China | |
| Stracher et al. (2005) |
Am Min 90:1729-1739 | |
| Wanmao Li et al. (1986) |
| Guo +6 other references |
| Yingxia Xu et al. (2007) +1 other reference |
| Meixiang et al. (1987) |
Costa Rica | |
| Ulloa et al. (2018) |
Cyprus | |
| Palache et al. (1951) |
Czech Republic | |
| Lapis 2002 (7/8) |
France | |
| Chauris (2014) |
| Vessely Collection |
| Bourgoin et al. (2011) |
| Mari (2002) |
Germany | |
| Walenta (1992) |
| Mangold et al. (10/21) |
| Palache et al. (1951) |
| Weiß (1990) |
| Witzke (2012) |
| Witzke et al. (1998) |
Greece | |
| Rieck (n.d.) |
| Schnorrer (1995) +1 other reference |
Rieck (n.d.) | |
Rieck et al. (2018) | |
| Rieck (n.d.) |
| Balić-Žunić et al. (2016) |
Hungary | |
| |
Lovász A. (2014) | |
| collector: Gábor Koller +1 other reference |
| ACTA MIN. PETR. Suppl. Tomus XXXVIII. +1 other reference |
| ACTA MIN. PETR. Suppl. Tomus XXXVIII. +1 other reference |
Szakáll et al. (1996) | |
Iran | |
| Khorasanipour et al. (2011) |
| Bariand et al. (1977) |
Italy | |
| De Michele (1974) |
Russo et al. (2004) | |
| Fernando Caboni et al. (2024) |
Fernando Caboni et al. (2024) | |
| PANICHI U. (1924) |
P.Forti (1994) +1 other reference | |
| Capperi M. |
| Brizzi G. et al. (GR) |
| Brizzi G. |
| Brizzi G. & Meli R. (1995) |
| Göske et al. (1997) |
Bortolozzi (n.d.) | |
| Christian V. Mavris collection |
| Biagioni et al. (2019) +1 other reference |
| Mauro (2020) |
Mauro D. (2016) | |
Japan | |
| Sakurai et al. (1958) |
| Y. Okazaki collection |
Lebanon | |
| Kruszewski (2019) |
Morocco | |
| Hakkou et al. (2008) |
Peru | |
| Petersen (1970) |
| Tyc et al. (2022) |
Ciesielczuk et al. (2013) | |
| Hyršl (2010) +1 other reference |
| Petersen (1970) |
| Petersen (1970) |
| Petersen (1970) |
Poland | |
| Kruszewski (2013) |
| Cu +2 other references |
Portugal | |
| Marques de Sá et al. (2010) |
| Álvarez-Valero et al. (2008) +1 other reference |
| Oliveira et al. (2024) |
Romania | |
| Romanian Journal of Mineral Deposits +2 other references |
Russia | |
| Cesnokov et al. (1998) |
Lapis (2010) | |
Saint Kitts and Nevis | |
| Hutton (1970) |
Saint Lucia | |
| A Mars Analogue Site. Masters Thesis +1 other reference |
Slovakia | |
| |
| Grecula (1995) |
| Duda +1 other reference |
South Africa | |
| Cairncross et al. (1995) |
| Cairncross et al. (1995) |
Spain | |
| Frost et al. (2007) |
| Calvo Rebollar (2014) |
| Valente et al. (2013) |
Valente et al. (2013) | |
Valente et al. (2013) | |
| Calvo (1999) |
| Romero et al. (2006) +1 other reference |
Lapis (2010) | |
| Mata i Perelló (1990) |
| Joan Abella i Creus (Joanabellacreus@gmail.com) |
Switzerland | |
| Stalder et al. (1998) |
| Perroud et al. (1987) +2 other references |
| Meisser (2012) |
Tajikistan | |
| Badalov et al. (1975) |
UK | |
| Livingstone et al. (1983) |
| Livingstone et al. (1983) |
USA | |
| |
Anthony et al. (1995) +1 other reference | |
Grant et al. (2005) | |
| Merwin et al. (1937) +3 other references |
| Anthony et al. (1995) |
| Anthony et al. (1995) |
| Anderson (1927) +3 other references |
| Silliman et al. (1867a) +1 other reference |
| Pemberton (1983) +1 other reference |
| Pemberton (1983) +1 other reference |
www.mineralsocal.org (1999) | |
| Murdoch (1966) |
| Hanks (1886) +4 other references |
| Murdoch et al. (1966) +2 other references |
| with chemical analyses by W.T. ... +5 other references |
| Silliman et al. (1867a) +1 other reference |
| Silliman et al. (1867a) +4 other references |
| Palache et al. (1951) |
| part 2 +5 other references |
| King et al. (1991) +2 other references |
Jamieson et al. (2005) | |
| Landon (1927) +3 other references |
| USGS PP 1017 (Lovering,1978) |
| Eckel et al. (1997) |
| Eckel et al. (1997) |
Eckel et al. (1997) | |
| Eckel et al. (1997) |
| Eckel et al. (1997) |
| Collected by Julian Gray 21 September ... |
| Erd et al. (1960) |
| Guilbert and Zeihen 1964 +1 other reference |
| Chemical Geology Volume 215 |
| Castor et al. (2004) |
| Castor et al. (2004) |
| Castor et al. (2004) |
Castor et al. (2004) | |
Castor et al. (2004) | |
Castor et al. (2004) | |
| Castor et al. (2004) |
| Bullock (1981) |
Rosenzweig et al. (1955) +2 other references | |
https://www.mindat.org/photo-21656.html +3 other references | |
| Bullock (1981) |
| Journal of Geosciences (2015) +1 other reference |
| Bullock (1981) |
| Dietrich (1990) |
| Dietrich (1990) |
| Dietrich (1990) |
Mars | |
| Johnson et al. (2007) +1 other reference |
Quick NavTopAbout CoquimbiteUnique IdentifiersIMA Classification Classification Mineral SymbolsPhysical Properties Optical Data Chemistry Crystallography Crystal StructureEpitaxial Relationships X-Ray Powder DiffractionGeological EnvironmentType Occurrence SynonymsOther LanguagesVarietiesRelationshipsCommon AssociatesStrunz-MindatFluorescence Other InformationInternet Links References Localities Locality List
Alcaparrosa Mine, Sierra Gorda, Antofagasta Province, Antofagasta, Chile